건설장비 및 기계류의 소음·진동도
조사 연구 사업
결과보고서

2011. 11

중앙환경분쟁조정위원회
최종보고서
건설장비및기계류의손غو
진행도조사연구
2011.11
중앙환경분쟁조정위원회
제 출 문

중앙환경분쟁조정위원회 위원장 귀하

이 보고서를 “건설장비 및 기계류의 소음·진동도 조사연구”의 결과보고서로 제출합니다.

2011. 11

(사)한국소음진동기술사회
회장 송영덕

연구 책임자 박영환(소음진동기술사회)

자문위원 정일록(자동차자원순환협회)

참여 연구원 이연수(소음진동기술사회)

김정태(홍익대학교)

김명구(소음진동기술사회)

이우석(환경과학원)

이병권(대림산업)

신효성(KEI)

연구 보조원 박정욱(S&V Korea)

김성환(건설기술인협회)

문형수(남산방음)

김진호(건설환경협회)
목 차

제1장 서론 ... 3
 1.1 연구의 배경 및 목적 ... 3
 1.2 연구방향 및 연구내용 ... 6
 1.2.1 연구방향 .. 6
 1.2.2 연구내용 및 연구방법 ... 7

제2장 이론적 배경 .. 11
 2.1 소음의 기초이론 ... 11
 2.1.1 소음의 정의 .. 11
 2.1.2 음의 물리적 성질 ... 11
 2.1.3 음의 표시방법 ... 23
 2.1.4 음의 감쇠 보정치 ... 28
 2.2 건설기계의 종류 ... 40
 2.2.1 건설기계의 종류 ... 40
 2.2.2 공구류의 종류 .. 40
 2.3 건설기계의 소음특성 ... 45
 2.4 건설기계의 진동특성 .. 48

제3장 건설기계 소음진동 관련규정 ... 53
 3.1 국내 관련규정 ... 53
 3.1.1 소음진동관리법 ... 53
 3.1.2 저소음건설기계 ... 55
 3.1.3 건설기계 ... 64
 3.2 해외 관련규정 ... 66
 3.2.1 유럽 ... 66
 3.2.2 일본 ... 68
 3.2.3 기타 ... 75

제4장 건설기계 현황 및 측정결과 ... 93
 4.1 건설기계의 정의 및 분류 .. 93
 4.1.1 건설기계의 정의 ... 93
 4.1.2 건설기계의 분류 ... 94
 4.1.3 건설기계의 현황 ... 95
 4.2 건설기계 소음-진동도 측정 및 조사결과 ... 98
 4.2.1 측정방법 .. 100
 4.2.2 소음측정 및 조사결과 .. 101
 4.2.3 진동측정 및 조사결과 ... 101
4.3 건설기계의 현장사용 및 관리 실태 105
 4.3.1 현장 사용 실태 .. 105
 4.3.2 관리 실태조사 ... 123
 4.3.3 운행 시간 적용 방안 ... 125

제5장 건설기계 방음대책 .. 223
 5.1 방음대책의 종류 .. 223
 5.2 방음대책별 효과 .. 225
 5.2.1 소음저감 효과 ... 225
 5.2.2 장단점 .. 230

제6장 이동장비 소음진동도 평가 293
 6.1 개요 ... 293
 6.2 평가 결과 .. 293
 6.2.1 보온도 측정 결과 ... 293
 6.2.2 진동도 측정 결과 ... 294
 6.3 측정 및 평가 방안 제안 .. 293
 6.2.1 이동장비 소음 측정 및 평가방법 293
 6.2.2 이동장비 진동 측정 및 평가방법 293

제7장 피해기간 산정 방안 .. 301
 7.1 개요 ... 301
 7.2 피해기간 산정 기준 .. 315
 7.3 피해기간 산정 방법 .. 332
 7.4 사례분석 ... 347

제8장 공사장 소음진동 관리 방안 389
 8.1 건설기계 소음진동도 표시의무제 389
 8.2 공구류 소음진동도 표시제 396
 8.3 전문가 활용방안 .. 396

제9장 공사장 실무자 설문조사 .. 389
 9.1 설문조사 개요 ... 389
 9.2 설문조사 결과 ... 396
 9.3 정리 및 제안 ... 396

제10장 결론 ... 421

제11장 참고문헌 ... 433
 11.1 국내문헌 ... 433
11.2 해외문헌 437
11.3 웹사이트 439
제1장 서론

1.1 연구의 배경 및 목적
1.2 연구방향 및 연구내용
제 1장 서 론

1.1 연구의 배경 및 목적

가. 공사장 소음·진동 평가 시 국립환경과학원의 ‘건설기계류 소음특성’ (2003)의 조사 결과를 활용하고 있으나,
이 조사시점이 오래되고 그 동안 장비나 공법이 개선되었을 뿐만 아니라 현재 사용되고 있는 공사장비가 누락되어 있어 현실과 부합한 평가가 어려운 실정이다.
나. 공사장에서 발생하는 소음으로 인한 정신적 피해가 건설기계류의 소음특성에 규정된 장비외의 장비나 기계류의 소음에 더 민감한 피해를 호소하고 있는 실정이다.
다. 이에, 공사장에서 발생하는 소음으로 인한 정신적 피해가 건설기계류의 소음특성에 규정된 장비외의 장비나 기계류의 소음에 더 민감한 피해를 호소하고 있는 실정이다.

1.2 연구방향 및 연구내용

1.2.1 연구방향
본 연구의 방향은 다음과 같다.
① 실제 공사장의 현황과 실무자의 의견을 반영한 연구를 추진해 나간다.
② 기존의 측정 자료 활용 및 적용방안의 제시한다.
③ 측정과 결과에 대한 활용을 위한 타당한 근거 제시를 위하여 공사장 및 장비의 다양성을 분류를 통하여 정리하고, 대표성을 갖는 소음도 및 진동도를 제시한다.
④ 유사 장비나 사례의 경우 예측하여 적용이 가능하도록 기준값과 적용방안을 제시하고자 음향파워레벨(PWL)값을 제시하고자 한다.
⑤ 외국의 저소음, 저진동 개발 요구 및 범 제도의 검토를 통해 제조사의 소음, 진동도 표시 의무화 방안을 단계적으로 적용하도록 하여, 신규 소음원이나 진동원에 대하여 지속적인 자료의 업그레이드가 될 수 있도록 제안한다.

(그림 1-1) 연구의 방향 및 내용
1.2.2 연구내용 및 연구방법
본 연구의 내용 및 방법은 다음과 같다.

가. 연구내용

① 건설장비 및 기계류(이하 “건설장비류”) 현황 조사
- 건설장비류 일반 현황조사
- 장비의 특성 조사 및 분류
- 장비 운영기간 및 시간 비율에 대한 분석
- 건설관련 전문가 및 단체 면담을 통한 조사
- 사용 비도 및 시장에 대한 현황과 전망

② 측정대상 건설장비류 선정
- ‘건설기계류의 소음특성’ (환경과학원, 2003년)에 수록된 장비중 소음·진동도 측정대상 선정 : 2003년 당시 측정횟수가 너무 적거나 장비의 규격, 특성 등이 변경된 장비
- 주요 건설기계류로서 ‘건설기계류의 소음특성’에서 수록되어 있지 아니한 장비
- 기타 소음도가 높은 소형 장비 : 예비측정결과 7.5m이격한 위치에서의 소음도가 75dB(A)이상이거나 진동레벨이 65dB(V)이상인 장비(공구)

③ 소음도 측정분석
- 4m 이격 10개 지점 동시 소음도 측정 : 음향파워레벨(PWL) 산정
- 장비 및 규격별, 작업 대상별(목재, 철재, 플라스틱 등), 작업 상태별(무부하/ 부하/ 작업시)로 구분하여 각각 3회이상 측정.
- 측정시간 변화에 따른 특성 검토 : 장비 가동 시간에 따른 소음도
변화 검토

④ 진동도 측정·분석
- 7.5m 및 15m 이격 지점의 지면 위에서 진동레벨(수직보정) 측정(소음 분야 준용)
- 소음진동공정시험기준 중 공사장 진동측정방법에 준하여 측정
- 동일 장비에 대한 토질 및 암반 특성에 따른 진동변화 제안

⑤ 건설장비류의 소음·진동도 제안
- 환경분쟁사건 배상액 산정기준 부록편 소음·진동도 수정

⑥ 건설장비류 사용 시 방음대책의 종류 및 시행효과 분석
- 방음대책별 소음도 저감효과(주파수 특성 고려) 예측 : 장비별 적정
방음대책 및 소음저감효과 예측

⑦ 이동장비(댐프트럭, 레미콘 차량, 살수차 등)의 소음·진동도 평가 방안 제안
- 이동(속도별) 및 정지상태의 소음·진동도 분석
- 공차인 경우와 적재에 따른 소음·진동도 변화 측정 및 분석
- 이동장비의 소음·진동도 측정 및 평가 방안 제안

⑧ 피해기간 산정 방안 등 검토
- 단속적인 발생 소음에 대한 피해기간 산정 방안 검토
- 작업(장비)별 대표 지속시간을 도출 : 전체 작업시간 중 해당 장비
의 가동시간 비율을 산정

⑨ 기타 공사장 소음진동관리에 대한 제도적 보완이 필요한 사항 도출 및
발견방안 제시

⑩ 현행 소음·진동평가 프로그램 수정·보완
나. 연구방법

① 소음도 측정시 평균(Leq) 및 최고(Lmax) 소음도를 동시에 측정

② 기존 자료 활용 및 보완

- 건설기계류의 소음특성(국립환경과학원, 2003년)
- 소음발생건설기기 소음도 검사결과(환경과학원, 2008~)
- 공사장 환경분쟁사건 소음·진동도 산출방법 개선연구(한국환경정책 평가연구원, 2007년)
- 배상기준없는 장비소음도 조사결과(2010년)
- 장비 제조사 자료 수집 등
건설기계 및 기계류의 소음-진동도 조사연구
제2장 이론적 배경

2.1 소음의 기초이론
2.2 건설기계의 종류
2.3 건설기계의 소음 특성
2.4 건설기계의 진동 특성
제 2 장 이론적 배경

2.1 소음의 기초이론

2.1.1 소음의 정의

소음이란? 『바람직하지 않는 소리(Unwanted Sound)』를 총칭하는 것이며, 『소음·진동 규제법』 제2조에서 “소음이라 함은 기계, 기구, 시설, 기타 물체의 사용으로 인하여 발생하는 강한 소리”로 정의하고 있다. “바람직하지 않는 소리”, “강한 소리”의 의미는 사람의 주관적인 관점에 따라 달라지기 때문에 물리적인 평가를 명확하게 정의하는 것은 어렵다.

소리는 일상생활의 일부분으로써 소리의 기능을 정확히 인식하는 경우는 적으나 현대사회에서 발생하는 소리는 매우 자주 사람들을 성가시게 한다. 이는 발생 소리중에서 불쾌하거나 원치 않는 소리들이 포함되어 있기 때문이며 사람들은 이러한 소리들을 통칭하여 소음이라 일컫는다. 이러한 소리가 사람들에게 미치는 성가심의 정도는 소리의 질뿐만 아니라 소리에 대한 사람들의 태도에도 많은 관계가 있다. 예를 들면, 음악은 사람들이 즐기는 소리이나 그 음이 특허, 그렇다면 어떤 사람에게는 소음에 불과한 것이다. 이와 같이, 어떤 음을 소음으로 판단한다는 것은 개인에 따라 다를 수 있지만 반응, 영향 등을 기준으로 하여 사회에 방해를 주는 음, 사고, 공부, 사색 등 작업의 효율을 저하시키는 음, 불안감, 수면방해 등 신경계와 생리적인 면에 방해를 주는 음 그리고 정력의 감소를 가져오는 음 등을 소음이라 할 수 있다.

2.1.2 음의 물리적 성질

음파의 발생과 성질

○음파는 매질을 구성하고 있는 입자들의 압축과 이완의 교변작용에 의해 에너지가 전달되는 파동현상이다. 음파는 기체, 액체, 고체의 어느 매질
에나 존재할 수 있으며, 다른 종류의 매질이 나란히 있는 경우에는 한 매질 내부의 음파가 다른 매질 속으로 투과되어 진행한다. 예를 들면 (그림 2-1)과 같이 도로를 주행하고 있는 자동차로부터 발생된 음파(소음)는 대기중을 진행하여 도로변 시멘트벽에 입사하고, 입사된 음파는 시멘트벽에 진동을 유발시킨다. 시멘트 벽내의 진동은 벽의 반대 면에서 대기 중으로 소리의 형태로 진행된다.

(그림 2-1) 소리의 반사와 투과

이와 같은 음파의 진행과정에서 대기 중의 음파는 소리, 고체 내의 음파는 진동이라고 부르지만 이는 관념상의 차이일 뿐, 소리와 진동은 모두 매질의 탄성에 의한 압력파라는 점에서 실제로는 동일한 물리현상이다.

(그림 2-2)는 순음인 정현파의 발생과정을 개념적으로 보여주는 것으로 써 표면이 무한히 넓은 피스톤의 단진자 운동에 의해 대기 중에 정현파 음파가 발생되는 과정을 설명하고 있다. 피스톤 운동속도의 시간흐름에 따른 변화는 (그림 2-3) 왼쪽의 단진자 운동과 비교함으로써 이해될 수 있다. 단진자는 그림 (a), (c) 혹은 (e)와 같이 중심부(최저 위치)를 지나는 순간에 최대 속도를 갖고, (b)와 (d)는 진동의 최대 위치에서 운동의 방향이 바뀌는 순간에 잠시 정지한다. 이에 대응하여 피스톤이 빠른 속도로 움직이는 순간에는 큰 압력변화가 발생하고, 반면에 피스톤이 정지한 순간의 피스톤 바로 앞의 대기압력은 평형상태로 돌아간다.
◦ (그림 2-3)은 파동 발생의 원점을 \(\chi = 0 \)으로 하고 초기시간을 \(t = 0 \)으로 가정하여 압력 변화량 \(p \)를 \(\chi \)축에 대하여 나타낸 그림으로써 \(p(\chi, t=t_4) \)는 순간 압력의 공간분포를 의미한다. 피스톤의 왕복운동이 계속되면서 이와 같은 파동의 형성이 반복되어 공간 정현파를 얻는다. 이 결과를 수식으로 표현하면 다음과 같다.

\[
p(\chi) = A_p \cos\left(\frac{2\pi x}{\lambda}\right)
\] \hspace{1cm} (2-1)

◦ 여기서, \(A_p \)는 파동의 진폭으로써 (그림 2-3)의 경우에는 압력변화의 최대치 \(p_{\text{max}} \)와 동일하다. 식 (2-1)은 한 파장이 완전히 형성된 후, 즉 \(t=t_4 \)에서는의 파동의 공간분포를 나타낸다.

(그림 2-2) 소리의 발생에 따른 압력 변화
건설기계 및 기계류의 소음-진동도 조사연구

그림 2-3 압력의 공간분포

한편, (그림 2-4)는 파동의 시간분포를 나타내는 데에도 이용될 수 있다. 피스톤 앞의 수직점선 AA'를 따라서 (a)로부터 (e)까지 차례로 읽은 압력 변화량 p는 파동의 시간변화를 나타내며, 이 과정에서 걸린 시간을 주기라 부르고 T로 표시한다.

(그림 2-4)는 (그림 2-2)의 수직점선 AA'에서 관측되는 압력 변화량에서 p를 시간축에서 나타낸 그림으로써 p(t, χ=0)는 χ=0 위치에서의 압력의 시간변화를 의미한다. 피스톤의 왕복운동이 계속되면서 이와 같은 파동이 반복 형성되어 시간축에서의 정현파를 얻으며, 수식으로 나타내면 다음과 같다.

\[p(t) = A_p \cos \left(\frac{2\pi t}{T} \right) \]

(2-2)
상기에서, 피스톤에 의해 발생되는 정현파의 공간분포와 시간분포 특성에 대하여 제시하였다. 공간축과 시간축은 파동의 기본적인 두 개의 독립변수로서 진행파동(Propagation Wave)의 경우에는 상기에서 서술한 바와 같이 공간과 시간 변화에 따라서 정현파의 특성을 갖는다. 이 두 개의 변화특성인 식 (2-1)과 (2-2)를 합하면 진행파동은 식 (2-3)과 같이 나타낼 수 있다.

\[\rho(x, t) = A \cos\left(\frac{2\pi x}{\lambda} - \frac{2\pi t}{T} + \phi\right) \quad (2-3) \]

위 식에서 \(\phi \)는 초기 위상을 나타낸다. 예를 들면 시간의 원점으로써 (그림 2-4)와 같이 최대 압력이 발생되는 순간이 아닌 다른 시간을 가정한다면 \(\phi \)는 순간의 시간 차이에 해당하는 위상값을 나타낸다.

음파의 속도, 파장, 주파수

음파의 속도는 음파가 1초 동안에 전파하는 거리를 말한다. 대략적으로 음속은 20℃에서 343m/sec 정도이므로 파장은 주파수에 따라 정해지며 주파수 \(f \)가 10Hz, 100Hz, 1,000Hz, 3,400Hz로 변할 때 파장은 34m, 3.4m, 0.34m, 0.1m가 된다. 이처럼 파장은 음의 주파수에 의해 변화되므로 소음을 저감시키기 위해서는 그 음에 포함되어 있는 주파수 성분을 고려할 필요가 있다.

주파수 \(f \)와 파장 \(\lambda \) 사이에는 다음 식이 성립한다.

\[f = \frac{c}{\lambda} \quad (2-4) \]

여기서, \(\lambda \): 파장 (Wavelength)

\[c : \text{음의 속도 (343m/sec, 20℃에서)} \]

\[f : \text{주파수 (Frequency)} \]
즉, 주파수는 1초 동안에 발생하는 파장의 수이며 1초 동안의 피스톤 왕복수(진동수)와 같다. 상기의 식 (2-4)에 의하면 주파수와 파장은 상호 역수관계이기 때문에 저주파 음파의 파장은 길고, 고주파 음파의 파장은 상대적으로 짧다. 주파수는 파장 대신에 주기(T)에 의해서 다음과 같은 식과 같이 정의할 수 있으며, 주파수는 1초 동안에 발생하는 주기의 수와 동일하다.

\[f = \frac{1}{T} \] \hspace{1cm} (2-5)

음압과 음의 세기와의 관계

음은 공기를 매질로 하여 압축, 평창과정을 거치는 소밀파이므로 공기 중에서 공기입자 밀도의 농도의 짙고 옅음으로 표현할 수 있으며, 농도가 짙은 쪽은 공기가 압축되어 기압이 평균보다 상승하고, 옅은 쪽은 공기가 희석되어 기압이 저하한다. 즉, 음은 공기의 압력변화라 할 것이며 이것은 음의 실체이다. 음압(Sound pressure)의 단위는 Pa(Pascal)이다.

공기 중에서 압력의 변동이 환상되어 가는 현상을 음의 전달(propagation)이라 한다. 이것은 공기입자가 움직이는 것이 아니라 공기 입자의 운동이 전달되어 가는 것이다. 결국 물리적으로는 Energy의 흐름과 같다. 음의 강도란, 단위시간당 단위면적을 통과하는 음의 Energy이다.

어떤 점에서 공기의 입자속도(Sound particle velocity)를 \(u \), 음압을 \(p \)로 하면, 미소시간 \(\delta t \)간에 \(p \)가 하는 일의 양 \(\delta J \)는 다음과 같다.

\[\delta J = p u \delta t \] \hspace{1cm} (2-6)
제 2 장 이론적 배경

여기서, δJ는 단위면적을 통과하는 Energy를 말하며 그 시간적 평균 즉, 음의 세기는 주기를 T로 하면 식 (2-7)과 같이 나타낼 수 있다.

$$J = \frac{1}{T} \int_0^T p u dt$$ \hspace{1cm} (2-7)

음압과 입자속도의 방향이 동일하면, p는 공기의 밀도(ρ)와 음의 전달 속도(c)로써 다음 식 (2-8), (2-9)와 같이 나타낼 수 있다.

$$p = \rho c u$$ 이므로

$$J = \rho c \frac{1}{T} \int_0^T u^2 dt = \rho c u_e$$ 이고

$$J = \frac{1}{\rho c} \frac{1}{T} \int_0^T p^2 dt = \frac{1}{\rho c} P_e^2$$

여기서, $V_e^2 = \frac{1}{T} \int_0^T v^2 dt$ \hspace{1cm} (2-8)

$$P_e^2 = \frac{1}{T} \int_0^T p^2 dt$$ \hspace{1cm} (2-9)

로 표시할 수 있다. V_e, P_e는 각각 입자속도와 음압의 실효치를 나타낸다.

실효치 (Root Mean Square : rms)

음압이나 음의 강도 등 음의 강약을 표시할 경우 일반적으로 그 실효치를 사용한다. 이것은 음의 미소한 압력변동을 나타낸다. 음파에 수반되는 압력 $P(t)$는 대단히 빠르게 변하기 때문에 이 양을 그대로 음향 측정단위로 사용하는 것은 불편하다. 이와 같이 시간에 따라 빠르고 불규칙하게 변하는 양의 측정을 위해서 물리와 공학에서는 여러 가지 평균값 개념을 사용한다. 가장 단순한 평균값은 순간 측정값 자체의 시간 평균을 구하는 것이다. 그러나 (그림 2-5)와 같은 정형화의 경우에 압력의 변화는
시간에 따라서 positive(+) 값과 negative(−) 값이 교차하기 때문에 전체적인 평균값은 영(0)이 된다. 따라서 음파의 세기를 적절히 표현하기 위해 새로운 평균값 개념을 도입해야 한다.

○ 시간 신호의 순간값의 평균값은 그 신호에 포함된 에너지 양과 직접 관련되는 양으로써 물리적으로 중요한 개념이다. 일반적으로 주기를 갖는 시간함수 \(X(t) \), 측정시간 폭 \(T \)에 대한 실효치(\(X_{rms} \))는 시간에 관계없이 일정치로 잡고 다음 식으로 표현한다.

\[
X_{rms} = \sqrt{\frac{1}{T} \int_0^T X^2(t) \, dt} \quad (2-10)
\]

○ \(X(t) \)가 주기를 갖지 않을 때에는 측정시간을 충분히 크게 하여 측정시간의 미미한 변화가 \(X_{rms} \)에 영향을 주지 않게 정할 필요가 있으나 현실적으로는 그 만큼 장시간이 걸리지 않으므로 임의의 시간을 정하게 된다. 실제로 소음측정에 있어서 이때의 적분시간은 측정기의 동특성에 의해 규정된다. 특히, 정현파의 경우에는 실효치와 진폭 사이에 다음과 같은 단순 관계식이 존재한다.

\[
P_{rms} = \frac{A_P}{\sqrt{2}} \quad (2-11)
\]

○ 여기서, \(A_P \)는 정현파의 진폭이다. 그러나 random파의 경우에는 이러한 단순 관계식이 존재하지 않는다. 현재 사용중인 모든 음향측정 기기들은 측정된 압력을 실효치로 나타낸다.
음파의 자유진행

다기와의 음향은 음원으로부터의 거리로 결정된다. 점음원에 의한 구면파의 음압은 음원으로부터의 거리에 역비례한다.

\[p = \frac{A}{r} \] \hspace{1cm} (2-12)

여기서, \(A \)는 대기의 평형상태에 의해서 결정되는 상수이다. 임의의 거리 \(r_1 \)에서의 음압도 \(L_1 \)은 다음과 같이 구할 수 있다.

\[L_1 = 20 \log \left(\frac{A}{r_1 \cdot p_0} \right) \] \hspace{1cm} (2-13)

거리 \(r_1 \)의 두 배되는 위치, 즉 \(r_2 = 2r_1 \)에서의 음압레벨은 다음과 같
다.
\[
L_2 = 20 \log \left(\frac{A}{r_2 \cdot p_0} \right) = 20 \log \left(\frac{A}{2r_1 \cdot p_0} \right) \\
= L_1 + 20 \log \left(\frac{1}{2} \right) \\
= L_1 - 6 \quad (2-14)
\]

즉, 구면파의 경우 음원으로부터 거리를 두 배 증가시키면 음압레벨은 6 dB 감소한다. 이와 같은 법칙을 역지정법칙(Inverse square law)이라 한다. 이 법칙은 음파가 진행할 때 공기의 흡음감쇠가 전혀 없고, 지표면 및 지형특성을 고려하지 않는 이상적인 경우에 건설소음에 의한 소음피 해를 예측·평가하는데 거리에 따른 보정량으로 주로 사용된다.

또한, 음원의 종류로써 중요한 선음원(Line source)은 도로를 주행하는 자동차 소음이다. 선음원에 의한 음파는 원통파의 특성을 가지며, 점음원(Point source)에 의한 구면파와는 다르다. 원통파와 구면파의 가장 중요한 차이는 음원으로부터의 거리에 따른 음압변화 특성이다. 식 (2-15)에 대해 적용한 방법을 원통에 적용함으로써 선음원 음압의 거리감쇠를 식 (4)와 같이 나타낼 수 있다.

\[
p = \frac{A}{\sqrt{r}} \quad (2-15)
\]

즉, 식 (2-15)과 그림 2-6과 같은 원통파의 음압은 음원으로부터의 거리의 평방근에 반비례하며, 음원으로부터의 수직 거리가 각각 \(r_1, r_2 = 2r_1 \)인 위치에서의 음압레벨은 식 (2-16, 2-17)과 같다.

\[
L_1 = 20 \log \left(\frac{A}{\sqrt{r_1 \cdot p_0}} \right) \quad (2-16)
\]
식 (2-17)과 같이 원통파의 음압은 음원으로부터의 거리를 두 배 증가시키면 3dB 감소한다. 이 사실은 고속도로 등과 같이 선음원으로 간주할 수 있는 음원에서 실제로 확인할 수 있다.

(그림 2-6) 원통파의 진행과 에너지 확산

○한편, 면음원(Surface source)의 경우 무한히 넓은 평면상에 점음원이 무수히 많이 존재하는 경우를 생각할 수 있다. 이 경우에 음은 음원의 평면에 수직방향으로만 진행하게 된다. 따라서, 이상적인 면음원에서는 점음원과 선음원의 전파 경우와는 다르게 거리에 따른 감쇠는 일어나지 않는다. 음원은 각각의 유한한 길이나 넓이를 가지고 있으며, 음원에 따른 거리 감쇠는 길이와 넓이의 함수로 주어진다.

반 사(Reflection)
○반사는 파동현상 중에서 가장 중요한 특성 중의 하나이다. 거의 모든 음파는 진행과정에서 크고 작은 반사영향을 받게 된다. 특히 실내에서 음향측정을 하는 경우에 벽에 의한 반사효과의 고려는 필수적이다. 음파의 반사는 파동의 반사법칙에 따른다. 간단한 예로 이것은 거울면에서 빛의
반사와 같다.

(그림 2-7) 파동의 반사

○ 음파의 파장은 빛의 파장보다 훨씬 크기 때문에 효과적인 파동의 반사는 반사체의 크기가 파동의 파장에 비해 훨씬 클 때 일어난다. 이 효과는 파장이 긴 저주파 음파에서 더욱 현저하다.

○ 일반적으로 음파의 반사효과는 고주파 성분에서 더욱 중요하기 때문에 어떤 반사체로부터 반사되는 음파를 주파수 분석할 때 반사음파의 저주파 성분의 고주파 성분에 대한 상대적인 크기는 초기 입사음의 그것보다 훨씬 작을 수 있다.

회절(Diffraction)

○ 어떤 물체 주위에서의 음파의 회절은 파장이 그 물체의 크기보다 큰 경우에 잘 일어난다. 따라서 일반적으로 회절효과는 파장이 긴 저주파음에 대해서 잘 일어난다. 이것은 반사(reflection)효과와 상호 보완적인 특성을 갖는다. 즉, 반사가 잘 안되는 저주파 음은 회절에 의해서 방해 물체의 뒤편으로 진행하며, 반면에 반사가 잘되는 고주파 음은 작은 양만이 회절될 뿐 대부분 방해물의 앞면에서 반사되므로 방해물 뒤편으로 전달되는 양이 작다. 음파의 이러한 회절특성은 방음벽에 의해서 소음을 차단하는 경우에 방음벽의 효과를 제한하는 요소로 작용한다. 따라서 일반적으로 방음벽은 고주파 소음 차단에는 효과적이지만 저주파 소음에 대해서는 큰 효
과를 기대할 수 없다.

○ 한편, (그림 2-8)은 우리 주위에서 흔히 일어날 수 있는 회절현상에 따르는 파동진행 형태를 보여준다.

(그림 2-8) 음파의 회절

굴절 (reflection)

○ 파동의 굴절은 전파매질의 특성이 변하는 경계면에서 일어난다. 음파의 전파 매질인 대기의 특성을 결정하는 인자는 밀도와 온도이다. 이들 인자는 주로 수직 방향으로 변하지만 지형과 기후에 따라서는 수평방향으로도 변할 수 있다. 그러나 음파의 진행이 영향을 줄 정도의 큰 밀도와 온도변화는 비교적 원거리 전파에서만 기대할 수 있다. 따라서 음파의 굴절현상은 소음과 같이 멀리 진행하는 음파에 대해서는 고려되어야 하지만 실험실 내에서의 측정에서는 무시할 수 있다.

대기 흡수 (바람이나 기온분포에 의한 변화 - 산란과 굴절)

○ 음파는 대기입자 사이의 탄성 충돌에 의해서 전파된다. 이 과정에서 여러 가지 형태의 에너지 손실이 발생해서 공극적으로 음파는 소멸된다. 음파에너지의 대기 흡수에 대한 물리적 과정은 대단히 복잡하다. 음은
바람에 의해서 영향을 받는데, 바람은 음원으로부터 위쪽의 음을 감쇠시키고, 아래쪽의 음을 증가시킨다. 이러한 현상은 고도에 따른 바람의 속도변화에 의해서 발생하며, 지표면에서 바람을 향해 전달되는 음은 상승하여 음영 부분이 생기고 바람부는 방향의 소리는 먼 거리까지 잘 전달된다.

음파의 공기중 전파를 통한 음향에너지의 흡수감쇠 효과를 보면 300m 당 1~10㏈ 정도를 흡수하며, 고주파로 갈수록 흡수감쇠의 효과는 커진다. 따라서, 대략 1kHz보다 낮은 주파수 대역에서는 기하학적인 거리감쇠가 지배적이며, 2kHz보다 높이지게 되면 기하학적인 거리감쇠에 추가하여 음향에너지 흡수효과를 고려하여야 하므로 공기층의 감쇠효과를 무시할 수 없게 된다.

즉, 음향에너지를의 흡수효과는 실내와 같이 닫힌 공간에서는 무시될 수 있으나 공사장 소음과 같이 옥외로 전파되는 경우에는 고려되어야 할 중요 요인으로 등장하게 된다. 따라서, ISO 9613-1에서 제시한 대기흡수에 의한 감쇠를 살펴보면 아래의 식 (2-18)로 나타낼 수 있다. 대기흡수에 의한 감쇠 A_{atm}은 대상으로 하는 옥타브 밴드에 대해서 다음과 같이 계산한다(최대 약 15㏈까지).

$$A_{atm} = a \times \frac{d}{1,000} \quad (2-18)$$

여기서, a는 km당 대기흡수 계수이고, d는 이동거리를 나타낸다. 한편, <표 2-1>은 각 기상조건에서의 a 값을 나타낸 것이다.
제 2 장 이론적 배경

<table>
<thead>
<tr>
<th>T (℃)</th>
<th>상대습도 (%)</th>
<th>옥타브 밴드 중심 주파수(㎐)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>63</td>
<td>125</td>
</tr>
<tr>
<td>10</td>
<td>70</td>
<td>0.1</td>
</tr>
<tr>
<td>20</td>
<td>70</td>
<td>0.1</td>
</tr>
<tr>
<td>30</td>
<td>70</td>
<td>0.1</td>
</tr>
<tr>
<td>15</td>
<td>20</td>
<td>0.3</td>
</tr>
<tr>
<td>15</td>
<td>50</td>
<td>0.1</td>
</tr>
<tr>
<td>15</td>
<td>80</td>
<td>0.1</td>
</tr>
</tbody>
</table>

자료 : ISO 9613-1

<표 2-1> 온도와 상대습도에 따른 옥타브 밴드별 대기흡수 감쇠계수

2.1.3 음의 표시방법

음압(Sound Pressure)

음압이란 대기압에 의한 교류적 압력변화이며, 공기중의 경우 음과는 공기입자의 전후운동에 의한 소밀과(압력과)이다. 그러므로 소리는 대기의 작은 압력변화를 우리 귀의 고막에 의해서 감지하는 현상이다. 따라서 소리의 크기는 이 압력의 크기로써 정의하면 된다. 그러나 사람이 들을 수 있는 소리의 크기는 최저 가청 압력인 2×10^{-5} N/m^2 $(20 \mu Pa)$에서 통증을 느끼기 시작하는 최대 가청한계 압력인 200N/m^2 (200㎩)까지 광범위 하기 때문에 압력 자체로써 소리의 크기를 정의하는데 불편이 따른다. 이처럼 넓은 범위에서 변하는 양을 취급하기 위해서 물리학이나 공학에서는 흔히 그 양의 대수(log)값을 이용한다. 이러한 대수적 표현은 기준치에 측정치의 대수적 비로써 단위로는 데시벨(deci-Bel) 또는 dB를 사용하며, 다음 식 (2-19)와 같이 정의된다.

$$dB = 10 \log \left(\frac{Power}{\text{기준 Power}} \right)$$ (2-19)

여기서, $\log \left(\frac{Power}{\text{기준 Power}} \right)$는 전화의 발명자 Alexander Graham Bell을
추모해서 “Bel”이라고 부르며, 이 단위의 1/10을 테시벨(deci-Bel)이라고 정의한다.

음의 세기(Sound Intensity) 및 음향파워(Sound Power)

○ 진동체에 의하여 전달되는 음파가 탄성매질을 통과할 때 에너지로 변환되며, 이때 매질중의 분자들은 진동하기 시작한다. 단위시간에 단위면적의 매질을 통하는 에너지량을 음의 세기 I로 정하고, 음의 세기(Sound Intensity)의 단위는 W/㎡이며, 단위시간에 대한 에너지(일/단위시간)는 음향파워(Sound Power) W와 같다. 음의 세기와 파워간에는 다음 관계식이 성립한다.

\[I = \frac{\text{파워}}{\text{면적}} \] \hspace{1cm} (2-20)

○ 여기서, 음의 세기나 파워는 실효치이다. 점음원의 경우 구형파로 전달한다고 가정하면, 점음원으로부터 거리 r이 떨어지면 구형파의 표면적은 \(4\pi r^2\)이 되며, 이때 이 점음원의 성능 소리의 세기 I는 식 (2-21)과 같다.

\[I = \frac{W}{4\pi r^2} \] \hspace{1cm} (2-21)

○ 여기서, 음의 세기는 일정량의 음향파워를 발생하는 소음원으로부터 거리의 역 2승으로 감소하는데, 이를 음의 세기에 대한 역 2승 법칙이라 한다. 또는 환경소음에서 중요한 관계는 음파가 매질을 통과할 때 공기 분자들에 의해 실험된 실효음압으로 음의 세기를 식 (2-23)과 같이 나타낸다.

\[I = \frac{p^2}{\rho c} \] \hspace{1cm} (2-23)
여기서, \(p \)는 실험 음압, \(\rho \)는 공기밀도(㎏/㎥), \(c \)는 음파속도(m/sec)를 나타낸다.

○ 한편, 점음원으로부터 주위로 전달되는 소음의 정도를 추정하기 위해서는 음원 자체에서 출력의 크기가 필요하다.

○ 단위시간에 음원에서 배출되는 전 에너지는 음향출력이라 하며, 이것을 dB단위로 표시하여 음향파워레벨(sound power level : PWL)이라고 부른다. dB이라고 하는 계산단위는 대수척도로 기준량에 대한 비에 상용 대수를 10배하여 구하며, 음향출력이 \(P \)일 때 파워레벨(dB)은 식 (2-24)과 같이 표시된다.

○ 이 식에 의하여 얻어진 음향출력 및 음향파워레벨은 <표 2-2>과 같다.

\[
PWL = 10 \log_{10}\left(\frac{P}{P_0}\right) \quad [\text{dB}] \tag{2-24}
\]

○ 상기의 식 (2-24)에서 \(P_0 \)는 기준이 되는 음향출력으로서 \(P_0 = 10^{-12} W(\text{Watt}) \)로 가정한다. 이것은 음원으로부터 에너지가 공간으로 피었습니다 때 음의 강도는 음의 진행방향에 직각으로 잡은 단위면적을 1초 동안 통과하는 에너지량으로 W/㎡으로 표시한다.
<표 2-2> 음향출력과 음향파워레벨의 관계

<table>
<thead>
<tr>
<th>대 상</th>
<th>음향출력 (W)</th>
<th>음향파워레벨 (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>항공기</td>
<td>$10^2 \sim 10^5$</td>
<td>140 ~ 170</td>
</tr>
<tr>
<td>철도</td>
<td>$10^{-1} \sim 10^2$</td>
<td>110 ~ 140</td>
</tr>
<tr>
<td>자동차</td>
<td>$10^{-3} \sim 10^{-1}$</td>
<td>90 ~ 110</td>
</tr>
<tr>
<td>건설 기계</td>
<td>$10^{-3} \sim 10^{-2}$</td>
<td>90 ~ 140</td>
</tr>
<tr>
<td>공장 기계</td>
<td>$10^{-2} \sim 10^{-1}$</td>
<td>100 ~ 130</td>
</tr>
<tr>
<td>피아노</td>
<td>$10^{-3} \sim 10^{-2}$</td>
<td>90 ~ 100</td>
</tr>
<tr>
<td>TV</td>
<td>$10^{-6} \sim 10^{-4}$</td>
<td>60 ~ 80</td>
</tr>
<tr>
<td>청소기</td>
<td>$10^{-5} \sim 10^{-4}$</td>
<td>70 ~ 80</td>
</tr>
<tr>
<td>일반 대화</td>
<td>3×10^{-5}</td>
<td>75</td>
</tr>
<tr>
<td>개짓는 소리</td>
<td>$10^{-1} \sim 1$</td>
<td>110 ~ 120</td>
</tr>
</tbody>
</table>

또한, 음향에서의 dB는 음향파워 대신에 식 (2-23)에서 언급한 음향 세기 주로 사용하며, 이것을 dB단위로 표시했을 때 음의 강도래벨이라하고, 음의 강도래벨은 식 (2-25)와 같이 정의된다.

$$SIL = 10 \log_{10} \left(\frac{I}{I_0} \right) \ [dB] \quad (2-25)$$

여기서, I_0는 기준 음의 강도세기로써, 음향에서는 20세 전후의 가장 건강한 사람이 느낄 수 있는 최저 가청 압력인 $2 \times 10^{-5} \text{N/m}^2 (P_0 = \sqrt{\rho c I_0} \approx \sqrt{400 \times 10^{-12}})$에 해당하는 세기 $I_0 = 10^{-12} \text{W/m}^2$로 가정한다.

식 (2-23)에 의하며 I는 P^2에 비례하므로 식 (2-26)는 다음과 같은 압력의 함수(SPL)로 나타낼 수 있다.
제 2 장 이론적 배경

\[SPL = 10 \log_{10} \left(\frac{p^2}{p_0^2} \right) = 20 \log_{10} \left(\frac{p}{p_0} \right) \] (2-26)

따라서 음의 강도레벨과 음압레벨은 동일한 값을 알 수 있다.

dB의 대수법

- dB를 사용함으로써 1~1,012배에 이르는 에너지 범위를 0~120dB이란 보다 취급하기 쉬운 수치로 표현할 수 있고, 사람의 감각과 일치하는 등의 편리한 점이 많다. 이와 같이 dB는 큰 범위의 숫자를 쉽게 취급할 수 있는 장점이 있는 반면에 log를 이용해서 정의된 양이나 반응 더하거나 빼는데 주의를 해야 한다.

- dB로 정의된 두 개 이상의 양을 취급할 때에는 이들을 일단 본래의 물리량으로 바꾸어 더하거나 빼야한다. 이때 본래의 물리량에 의한 세기를 생각할 수 있고 위의 식에 의한 압력을 생각할 수도 있다.

- 그러나 세기의 실효치는 에너지 보존법칙에 의해서 직접 더할 수가 있으나, 압력의 실효치는 직접 더할 수가 없다. 단, 실효치가 아닌 순간 압력들을 물리법칙에 의거하여 직접 더할 수 있다.

- 따라서 dB를 계산할 때는 위 식에 의해서 세기로 환산하는 방법이 편리하다. 두 개의 음압레벨 \(L_{P1} \)과 \(L_{P2} \)가 다음과 같이 주어진 경우 이들을 더하는 방법은 다음과 같다.

\[
L_{P1} = 10 \log \left(\frac{L_1}{L_0} \right) = 10 \log \left(\frac{p_1^2}{p_0^2} \right) \] (2-27)

\[
L_{P2} = 10 \log \left(\frac{L_2}{L_0} \right) = 10 \log \left(\frac{p_2^2}{p_0^2} \right) \] (2-28)

한편, 식 (2-27)과 (2-28)을 세기로 표현하면 다음과 같다.

- 29 -
\[
\frac{I_1}{I_0} = \frac{p_1^2}{p_0^2} = 10^{L_{n/10}} \quad (2-29)
\]
\[
\frac{I_2}{I_0} = \frac{p_2^2}{p_0^2} = 10^{L_{n/10}} \quad (2-30)
\]

○ \(I_0\)에 대한 상대적인 총 세기는 다음 식 (2-31)으로 주어진다.

\[
\frac{I}{I_0} = \frac{I_1 + I_2}{I_0} = \frac{p_1^2 + p_2^2}{p_0^2} = 10^{L_{n/10}} + 10^{L_{n/10}} \quad (2-31)
\]

○ 세기레벨은 다음 식 (2-32)와 같다.

\[
L_P = L_{P1} + L_{P2} = 10 \log \left(\frac{I}{I_0} \right) = 10 \log \left(10^{L_{n/10}} + 10^{L_{n/10}} \right) \quad (2-32)
\]

○ 특별한 경우로써 만일 \(I_1 = I_2\)라고 하면, \(I = I_1 + I_2 = 2I_1\)이 된다. 따라서, 다음 식 (2-33)이 만족된다.

\[
L_P = L_{P1} + L_{P2} = 10 \log \left(\frac{2I_1}{I_0} \right) = 10 \log \left(\frac{I_1}{I_0} \right) + 3 \text{ [dB]} \quad (2-33)
\]

○ 즉, 세기가 같은 2개의 음파를 합하면 전체 음압레벨은 하나만의 음압레벨보다 3dB 증가한다.
2.1.4 음의 감쇠 보정치

소음의 전파 매체인 공기 전달음은 공기 중을 전달하여 방음벽, 방음둑 및 건물의 외벽 등에 의해 어느 정도 차단된 후 전달된다. 그러므로 음원측과 수음측 사이의 영향 요인으로 소음의 전달과정에서 어느 정도 기여하는가를 파악하기 위하여 거리에 의한 소음 감쇠효과, 방음벽에 의한 감음효과, 수림대에 의한 감음효과, 초과감쇠에 의한 감음효과에 대해 기초이론을 제시하면 다음과 같다.

거리에 의한 소음 감쇠효과

- 대기 중에서 소음전파는 매질인 대기의 운동에 의해 이루어져며, 기압, 온도, 습도, 풍속, 풍향 등에 따라 공간적·시간적으로 현저히 변동하므로 통계적 문제로 생각할 필요가 있다. 그러나 실제의 소음대책에서는 대기를 균일한 매질로 가정하여 기하학적인 근사계산 방법이 많이 사용되며, 이때 기상 등의 물리적 조건들은 초과감쇠로써 보정하는 것이 일반적이다. 여기에서는 도로교통소음의 크기를 예측하기 위한 기본 이론식을 다음과 같이 제시하였다.

▶ 점음원에서의 거리감쇠

- 점음원에서 음이 방사되는 경우 음원으로부터 d(m)만큼 떨어진 장소의 음압레벨은 식 (2-34)와 같이 나타낼 수 있다.

\[L = L_W - 11 - 20 \log d \quad (2-34) \]

여기서, \(L \) : 수음점에서의 음압레벨 [dB]
\(L_W \) : 음원의 음압레벨 [dB]
\(d \) : 음원으로부터 떨어진 거리 [m]
선음원에서의 거리감쇠
- 직선도로를 자동차가 나란히 밀집하여 정상주행하고 있는 경우, 이를 무지향성 점음원이 일직선상에 나란하게 밀집되어 있는 선음원으로 간주할 수 있다. 선음원으로부터 d(m)만큼 떨어진 장소의 음압래벨은 식 (2-35)와 같다.

\[L = L_w - 8 - 10 \log d \] \hspace{1cm} (2-35)

여기서, \(L \) : 수음점에서의 음압래벨 [dB]
\(L_w \) : 음원의 음압래벨 [dB]
\(d \) : 음원으로부터 떨어진 거리 [m]

식 (2-34)와 식 (2-35)는 도로의 구조가 평탄하여 주위에 장애물(건물, 방음벽, 수림 등)이 없는 장소에서 음압래벨 예측시에 적용할 수 있다.

방음벽에 의한 감음효과
- 도로교통소음 등에 대한 방음벽의 감음효과(Insertion Loss, 삽입손실)는 회절 감쇠치, 투과 손실치 및 직접음 감쇠치의 대수합과 방음벽 자체의 흡음 감쇠치의 합으로 이루어진다. 이중 투과손실 감쇠치는 방음벽이 약 20dB 이상의 차음성능을 가지고 있는 경우 무시할 수 있다. 현장에서의 감음효과 평가는 방음벽 설치 전후에 동일한 위치에서 소음레벨을 측정하고 그 차이를 구한다.

회절 감쇠치
- 방음벽에 의한 회절 감쇠치의 계산방법은 음원의 종류, 방음벽의 구조 및 형태, 흡음재의 유무 등에 의하여 달라지게 되지만, 여기에서는 대표적인 경우의 회절 감쇠치를 제시하고자 한다.
- 음원과 수음점 사이의 거리가 무한대이고, 높이가 HB[m]인 방음벽을
설치한 경우를 (그림 2-9)와 같이 나타내었다. 음원을 S(XS, YS, ZS), 수음점을 O(XO, YO, ZO)라 하고, 방음벽이 없는 경우 음원(점음원)의 파워레벨을 PWL이라 하면, 수음점에서의 음압레벨 SPL은 식 (2-36)과 같이 나타낼 수 있다.

\[
SPL = PWL - 10\cdot\log d
\] \hspace{1cm} (2-36)

단, \(d = \{(X_o - X_s)^2 + (Y_o - Y_s)^2 + (X_o - X_s)^2\}^{1/2}\)

(그림 2-9) 점음원의 회절감쇠

방음벽에 의하여 음은 음원 S로부터 방음벽 상부의 점 C(XC, YC, ZC)에서 회절하여 수음점 O에 입사하게 되며, 경로차 \(\delta\)는 식 (2-37)과 같이 구한다.

\[
\delta = CS + CO - d \\
= \{(X_c - X_s)^2 + (Y_c - Y_s)^2 + (Z_c - Z_s)^2\}^{1/2} \\
+ \{(X_o - X_c)^2 + (Y_o - Y_c)^2 + (Z_o - Z_c)^2\}^{1/2} \\
- \{(X_o - X_s)^2 + (Y_o - Y_s)^2 + (Z_o - Z_s)^2\}^{1/2}
\] \hspace{1cm} (2-37)

경로차 \(\delta\)로부터 Fresnel 수 N은 식 (2-38)을 이용하여 구하며, (그림 2-10)를 이용하여 회절 감쇠치를 구할 수 있다.
\[N = \frac{2\delta}{\lambda} \] \hspace{1cm} (2-38)

단, \(\lambda \) : 파장 (m)

- 방음벽에 두께가 있는 경우에는 (그림 2-10)에 나타낸 것과 같이 그 두께를 방음벽의 높이로 치환하여 근사적으로 계산한다. 이 경우에 실제지는 계산치보다 약간 더 감쇠하게 된다. 또한 컴퓨터를 이용하여 계산하는 경우에는 식 (2-38)에 의해 회절 감쇠치를 구한다.

\[
\text{회절 감쇠치} = 5 + 20 \times \log \left(\frac{\sqrt{2\pi} |N|}{\tanh \sqrt{2\pi} |N|} \right) \text{ [dB]} \] \hspace{1cm} (2-38)

단, \(N \)은 Fresnel 수이며, \((\pm)\)의 부호는 \(N > 0 \) 일 때에는 +(+), \(N < 0 \) 일 때에는 \((-)\)이다.

(그림 2-10) 반평면 방음벽에 의한 감쇠치

(그림 2-11) 두께가 있는 방음벽
직접음 감쇠치 (Incident Sound Loss)
- 회절감쇠는 방음벽이 무한장일 경우로 가정한 것이나, 현실적으로 방음벽은 유한한 것이므로 방음벽 양측면을 통하여 수음점에 직접 입사되는 음을 고려하여야 한다.
- 선음원의 단위길이당 음의 세기를 k, 음원에서 수음점까지의 거리를 r이라 하고 음의 전파가 일정하게 수평으로 확산된다고 하면 수음점 O에 입사되는 총 음의 세기 \(I_{in} \)은 식 (2-39)와 같이 나타낼 수 있다.

\[
I_{in} = \frac{k}{r} \left[\int_{\pi/2}^{\pi/2} \cos \theta \, d\theta \right] = \frac{2k}{r} \quad (2-39)
\]

- 한 개의 방음벽 설치로 수음점 O에 입사되는 음의 감쇠치 \(I_{in}' \)는 식 (2-39)에 의해 계산한다.

\[
I_{in}' = \frac{k}{r} \left[\int_{\pi/2}^{\pi/2} \cos \theta \, d\theta \right] = \frac{2k}{r} (\sin \theta_1 - \sin \theta_2) \quad (2-40)
\]

단, \(\theta_1, \theta_2 \)는 방음벽 좌-우단의 내각이다. 따라서, 방음벽에 의한 직접음 감쇠치 \(\Delta L_{in} \)은 식 (2-41)과 같다.

\[
\Delta L_{in} = 10 \log \left[\frac{I_{in}}{(I_{in} - I_{in})} \right] = 10 \log \left\{ \frac{2}{2 - (\sin \theta_1 + \sin \theta_2)} \right\} \quad [\text{dB}] \quad (2-41)
\]

수림대에 의한 감음효과
- 도로교통소음 차단을 위한 방음림은 수목의 하부까지 있어 무성하게 형성된 수림대를 의미한다. 도로 주변의 식수나 수림은 생활환경 보전, 경관과의 조화 등의 측면에서 중요한 역할을 하며 소음감쇠의 효과도 기대할 수 있다.
- 또한, 수림 등은 차량을 시각적으로 차단함으로써 주거자에 미치는 소음에 의한 영향을 심리적으로 완화시키는 효과가 있다. 즉 수림대는 소음감쇠라고 하는 물리적인 완충효과 외에 심리적인 압박감을 완화시
해 주는 효과도 크다.
- 특히, 수림대가 소음전파에 영향을 미치는 물리적 요인으로는

 - 첫째, 잎과 줄기에 의한 흡음이다. 요인으로써는 잎과 줄기에 의한
 흡음률이 0.02∼0.1의 범위이며, 잎 두께율수록 흡음률이 크고, 주
 파수에는 그다지 좌우되지 않는다.
 - 둘째, 지면(부식토)에 의한 흡음이다. 요인은 수림지역 지표면이 부
 식토로 되어 있는 경우 개방초지에 비하여 흡음율이 크고, 이에 의해
 음이 감쇠하게 된다.
 - 셋째, 수림에 의한 음의 산란이다. 고주파수에서는 효과가 있으나 중
 음역 이하의 고주파에서는 거의 기대하기가 어렵다.
 - 넷째, 지표의 온도구배, 마찰저항, 공기의 습도를 들 수 있다. 뚜렷하
 지는 않으나, 야간에는 지표면 온도가 지상보다 낮게 되어 온도구배
 에 의해 소음이 멀리까지 전달되며, 소음감쇠의 측면에서는 불리하게
 된다.
 - 다섯째, 바람의 구배이다. 식수가 바람의 구배의 영향을 감쇠시키고,
 산란에 의한 감음효과를 준다.
- 이와 같은 각 요인은 매우 복잡하게 소음전파에 영향을 미치며, 실제로
 각 요인으로부터 소음 감쇠량을 추정하는 것은 매우 어렵다.
- 도로변의 10m 이하 폭의 수림대에서는 지표면에 의한 감쇠량과 수림
 에 의한 소음 감쇠량의 구별이 모호하며, 다소 효과가 있다고 하여도
 수림의 범위, 수종, 밀도 등 조건이 광범위하므로 이상과 같은 여러 가
 지 요인의 복합적인 효과로 간주하는 것이 일반적이다.
- 소음의 영향을 줄일 수 있는 정도는 수목의 종류에 따른 조성방법 및
 성장단계에 영향을 받으며, 식수의 유형, 구조, 배치 및 밀도에 따라 다
 르다. 조림지역의 수평거리가 30m이고, 관목이 무성할 때에는 중·저주
 파수 대역에서 3∼4㏈, 고주파수 대역에서 10∼12㏈ 정도의 소음을 저
 감할 수 있다.
초과감쇠에 의한 감음효과
소음은 주위의 매체를 통해 사방으로 전달되며, 음원과 수음점 사이의 여러 가지 메카니즘에 의해 감쇠된다. 음원에서 발생한 음은 기하학적으로 확산되기 때문에 거리에 따라 음의 강도는 작아진다.
이와 같은 현상은 일반적으로 전달거리 100m 이내에서 나타나며, 그 이상의 원거리에서는 공기에 의한 흡음감쇠, 지면의 상황, 건물 등의 효과가 달리기 기하학적 확산에 의한 감쇠보다 큰 감쇠를 나타낸다.
이러한 감쇠를 초과감쇠라 하며, 주파수에 의해서도 크게 변화하고, 기상의 영향을 받아 복잡한 형태를 보이는 경우도 있다.

공기의 흡음에 의한 감쇠
- 공기를 매질로 하여 전달되는 음파는 기하학적인 확산에 의한 감쇠 이외에 매질 중에 이 에너지가 흡수되어 감쇠한다. 기하학적 확산에 의한 감쇠가 없는 강도 I_0의 평면파가 거리 x를 진행하면 강도 I_x는 다음과 같이 식 (2-42)과 같이 표시된다.

$$I_x = I_0 \cdot e^{-kx} \quad (2-42)$$

단, k는 단위길이를 전파할 때 공기중의 감음계수로써 Harris의 실험 결과에 의해 구할 수 있다.

- 실용적으로 100m를 전파할 때 500㎐ 대역에서의 초과 감쇠량은 <표 2-3>과 같이 약 0.23㏈로써 도로에 근접한 수음점에서의 도로 교통소음 예측 시 무시할 수 있는 정도임을 알 수 있다.
<표 2-3> 대기 흡수에 의한 음의 감쇠(온도 15℃, 습도 50% 이상)

<table>
<thead>
<tr>
<th>옥타브 밴드 중심주파수 [㎐]</th>
<th>75∼150</th>
<th>150∼300</th>
<th>300∼600</th>
<th>600∼1,200</th>
<th>1,200∼2,400</th>
<th>2,400∼4,800</th>
<th>4,800∼9,600</th>
</tr>
</thead>
<tbody>
<tr>
<td>감쇠량 [㏈/100m]</td>
<td>0.05</td>
<td>0.11</td>
<td>0.23</td>
<td>0.50</td>
<td>1.0</td>
<td>2.0</td>
<td>4.0</td>
</tr>
</tbody>
</table>

자료: Harris, C. M, 1996. 7

기상조건 등에 의한 영향

- 밝은 날 대기의 지표면은 온도가 높고 상공으로 올라 갈수록 온도가 저하되는 것이 일반적이다. 야간 또는 흐린 날에는 그와 반대의 현상을 보인다. 음속은 온도의 증가에 따라 증가하므로 지표면의 온도가 높은 경우에는 음성이 급격히 떨어져 음란에서 어느 정도 멀어진 거리에서는 음향부분이 존재하게 되며, 반면에 지표면에서 멀어질수록 기온이 상승하는 경우에는 아래로 굴절하여 멀 거리까지 음이 전달된다.

- 또한, 음은 바람에 의해서 영향을 받는다. 바람은 음원으로부터 윗쪽의 음을 감쇠시키고, 아랫쪽의 음을 증가시킨다. 이러한 현상은 고도에 따른 바람의 속도변화 때문에 발생하며, 지표면에서 바람을 향해 전달되는 음은 상승하여 음향부분이 생기고 바람부는 방향의 음은 멀 거리까지 잘 전달된다.

- 이상과 같은 기상조건에 의한 영향은 음향과 기류의 현상이 동시에 관여하는 복잡한 물리현상으로써 현장에서 이론적으로 설명하기는 어렵다. 따라서 이론 혹은 풍동모형실험 등에 의해 감쇠량을 예측하거나 현장실험 등에 의해 경험적으로 감쇠량을 구하는 것이 현실적이다.
방음벽의 소음저감효과 한계

- 방음벽의 설치에 따른 소음저감효과를 살펴보면 에너지의 97%를 차단하였을 때 최대 15dB(A) 저감되는 것으로 나타났고, 통상 방음벽의 기대효과는 에너지의 90%를 차단하였을 경우인 10dB(A)내외의 저감효과가 있는 것으로 알려져 있다.

- 방음벽은 소음의 전달경로상에 장해물을 설치하여 소음이 직접 전달되지 못하고 우회경로를 통하여 전달경로를 길게하여 얻어지는 회절감쇠성질을 이용하므로 도로변 고층에 대하여 소음을 저감하고자 할 경우 방음벽 높이가 많이 필요해 설치가 곤란하므로 도로로부터 안전거리가 확보되어야 한다.

<표 2-4> 방음벽 삽입손실과 가능한 디자인 관계

<table>
<thead>
<tr>
<th>방음벽 삽입손실</th>
<th>디자인 실현성</th>
<th>소음에너지 손실</th>
<th>소음의 상대적 감쇄</th>
</tr>
</thead>
<tbody>
<tr>
<td>5dB(A)</td>
<td>단순함</td>
<td>68%</td>
<td>쉽게 인식</td>
</tr>
<tr>
<td>10dB(A)</td>
<td>이룰 수 있음</td>
<td>90%</td>
<td>1/2정도 소음</td>
</tr>
<tr>
<td>15dB(A)</td>
<td>매우 어려움</td>
<td>97%</td>
<td>1/3정도 소음</td>
</tr>
<tr>
<td>20dB(A)</td>
<td>거의 불가능함</td>
<td>99%</td>
<td>1/4정도 소음</td>
</tr>
</tbody>
</table>

자료 : FHWA(Federal Highway Administration) : Highway Noise Barrier Design Handbook