항공제품 국영문 인증정보
관리시스템 구축 및 미래
인증기준 개발 기획 연구

- 최종 보고서 -

연구기관 : 한국항공우주연구원
항공제품 국영문 인증정보 관리시스템 구축 및 미래 인증기준 개발 기획 연구

- 최종보고서-

2012. 12.

한국항공우주연구원
목 차

1. 과업 개요 .. 1
 가. 과업의 추진배경 및 목적 .. 1
 1) 과업의 추진 배경 .. 1
 2) 과업의 목적 .. 1
 나. 과업 범위 및 연구 내용 .. 2
 1) 항공기 인증관리통합시스템 구축 연구 ... 2
 2) 국내 공공 시험평가 시설 구축현황 연구 ... 3
 다. 진행 경과 ... 3

2. 항공기 인증관리통합시스템 구축 연구 ... 4
 가. 항공기인증시스템(ACS) 프로그램 개발 ... 4
 나. 항공기인증시스템(ACS) 개발 환경 .. 15
 다. 항공기인증시스템(ACS) 시험운영 및 프로그램 개발 성과품 17

3. 국내 공공 시험평가 시설 구축현황 연구 .. 18
 가. 항공기 인증시험평가 시설/설비에 대한 구축현황 파악 18
 1) 국내 시험 인프라 분석 .. 18
 나. 적합성 입증 방법 ... 19
 다. 항공기 인증시험평가 시설/설비 분석 ... 22
 1) 구조 인증 및 재료 인증 ... 22
 2) 계통 인증 .. 27
 3) 동력장치 인증 .. 30
 4) Icing 인증 시험 설비 현황 ... 31
 5) 낙뢰 시험 설비 현황 .. 32
6) HIRF 시험 설비 현황 .. 33
7) 시험 및 설비 구축 현황 .. 35

4. 무인항공기 등의 인증기준 수렴방안 연구 36
 가. 외국의 무인기 인증기준 동향 조사 36
 1) ICAO의 무인항공기 정책 동향 36
 2) 미국의 무인항공기 정책 동향 42
 3) 유럽의 무인항공기 정책 동향 45
 4) 호주의 무인항공기 정책 동향 48
 나. 무인기 인증을 위한 우리나라의 인증기준 개발방안 50
 1) 국제 기준 준수 및 인프라 구축과 연계 50
 2) 인증기준 개발 국제협력 및 무인기 데이터 축적 52
 3) 우리나라 인증기준 개발방안 55

부록 1. 국내 시험 인프라 분석 .. 61

부록 2. 소형 비행기 기술기준 무인항공기 작용성 검토 112

부록 3. 소형 희석항공기 기술기준 무인항공기 작용성 검토 ... 127
1. 과업 개요

가. 과업의 추진배경 및 목적

1) 과업의 추진 배경

가) 현재 항공기등의 인증 전문검사기관을 비롯한 유관기관에서 인증 관련 정보시스템을 운영하고 있으나 이를 통합적으로 관리하고 인증정보를 필요로 하는 일반 국민이나 항공종사자에게 효율적으로 인증정보를 제공할 수 있는 기능이 미흡한 상태이다.

나) 특히, 우리나라의 형식증명승인을 신청하는 해외의 항공기제작사와 인증업무 종사자들은 우리나라의 항공기 인증에 대한 정보가 훈여져 있어서 인증 제도, 절차, 혼령, 고시 등 제반 절차 및 인증 담당부서 및 담당자들 확인하는데 애로사항이 있었다.

다) 이러한 문제점을 해소하기 위하여 항공제품 국영문 인증정보 관리 시스템을 구축하여 외부 사용자에게 필요한 정보를 전달할 필요성이 제기되어 왔다.

2) 과업의 목적

가) 본 과업은 이러한 추진 배경에 따라 우리나라의 인증정보를 국영문으로 외부에 제공할 수 있는 정보시스템을 구축함으로서 외국의 업체 및 인증담당자와도 제반 절차 및 인증담당자의 정보를 포함하여 인증정보를 필요로 하는 사용자에게 용이하게 관련 정보를 제공하는 것을 목적으로 하고 있다.
나) 우리나라의 항공기 인증시험시설/설비 구축 현황에 대한 종합 연구와 무인기 인증의 핵심이 되는 인증기준의 개발방안에 대한 연구를 통해 미래의 인증기준을 개발하기 위한 기본 정책자료를 확보하고자 한다.

나. 과업 범위 및 연구 내용

본 과업의 범위에 따른 세부 연구내용은 다음과 같다.

1) 항공기 인증관리통합시스템 구축 연구

가) 항공기등의 형식증명, 형식증명승인, 기술표준품형식승인 국영문 정보를 제공할 수 있는 시스템 설계

① 국내외 민원인이 국영문 인증 정보를 용이하게 확인할 수 있는 방안을 종합분석 하고 이를 토대로 체계도 제작 등 최적의 시스템 설계

② 인증규정(법규/훈령/고시등) 및 자료의 제공 기능이 포함되도록 설계

③ 항공기인증 전문검사기관 등 유관기관에서 운영하는 정보 시스템과의 연계(Link)을 통해 관련 정보를 효율적이고 구체적으로 확인할 수 있어야 함.

④ 인증관리 통합시스템은 인증정보 활용 및 시스템 운영이 용이하도록 구성하여야 함.

나) 시스템 설계에 따른 프로그램 개발 및 시험운영

① 정보의 입력 및 다양한 검색/조회기능 구현
② 형식증명서인 업무 관련 정보제공 기능은 신청자가 해외업체임을 고려하여 영문 페이지를 함께 개발

③ 프로그램의 무결성을 확인하기 위한 시험운영 시행

2) 국내 공공 시험평가 시설 구축현황 연구

가) 항공기 인증시험평가 시설/설비에 대한 구축현황 과학 및 분석 연구

3) 무인항공기 등의 인증기준 수립방안 연구

가) 외국의 무인기 인증기준 동향 조사

나) 무인기 인증을 위한 우리나라의 인증기준 개발방안 제시

다. 진행 경과

- 2012년 4월 27일 계약 및 과제착수
- 2012년 5월 02일 착수 보고
- 2012년 7월 20일 인증시스템 구축 방안 보고
- 2012년 10월 19일 중간 보고
- 2012년 10월 19일 ~ 12월 14일 시스템 운영 및 보완
- 2012년 12월 14일 연구결과 최종 보고
- 2012년 12월 22일 과제 종료
2. 항공기 인증관리통합시스템 구축 연구

가. 항공기인증시스템(ACS) 프로그램 개발

항공기 인증관리는 항공기의 항행에 따른 안전성 확보를 위하여 설계, 생산, 운용의 모든 과정에서 항공법에서 규정하고 있는 안전성 요구사항에 대한 적합성을 기술적으로 판단하고, 이에 따라 승인, 허가, 제한, 금지 등의 법적 처분을 하는 것이라 할 수 있다.

![항공안전 이미지]

그림 1. 항행 안전을 위한 분야

항공기 인증 제도는 크게 항공기/엔진/프로펠러에 대한 설계, 제작을 담당하는 형식증명(Type Certification), 제작증명(Production Certification)과, 항공기 장비품/부품에 대한 기술표준품형식승인(technical Standard Order Authorization), 부품등제작자증명(Parts Manufacturers Approvals) 제도로 구분할 수 있다. 큰 범주에서 부가형식증명(Supplemental Type Certificate)은 형식증명의 일부로 간주되기도 한다.
1. 형식증명(Type Certificate) : 항공기/엔진/프로펠러(이하, “항공기등”) 형식별로 감항기술기준에 대한 설계적합성 승인
2. 부가형식증명(Supplemental Type Certificate) : 형식증명된 항공기등의 중대 형식설계 변경에 대한 적합성 승인
3. 제작증명(Production Certificate) : 형식설계에 합치하는 항공기를 지속적으로 생산할 수 있는 품질관리체계 승인 및 생산합치성 판정
4. 부품등제작자증명(Parts Manufacturer Approval) : 판매 목적의 교환 및 개조부품에 대한 설계적합성 승인 및 생산승인
5. 기술표준품형식승인(Technical Standard Order Authorization) :
 국토해양부에서 고시한 최소성능표준(MPS)의 대상품에 대한 설계적합성 승인 및 생산승인

또한, 수입 항공기에 대해서는 형식증명승인(Type Certificate Validation) 및 부가형식증명승인(Supplemental Type Certificate Validation)가 적용되고 있다.

그림 2. 항공기 설계/생산/운용 단계별 인증제도
일반 국민 및 항공종사자에게 항공기 인증정보 및 최신 인증현황을 효율적으로 제공할 수 있도록 항공기인증시스템(ACS, Aircraft Certification System) 기반 레이아웃을 다음과 같이 구성하였다.

그림 3. 화면레이아웃 설계
항공기 인증 제도의 이해 및 적용에 필요한 항공법, 항공법시행규칙, 항공기기술기준(KAS) Part 21, 감항기술기준, 훈령(Order Documents), 고시(Notice Documents)는 다음과 같은 유관기관 정보시스템을 확보 또는 연계(Link)하여 제공할 수 있도록 하였으며, 인증제도 소개, 지침서/안내서 제공, 국내의 최신 인증 현황 정보, 그리고 감항성 관련 협정(Bilateral Agreements)/ 약정(Arrangements)에 대한 정보는 본 시스템의 일부로서 구현하도록 설계하였다. 유관기관에서 제공하는 정보의 경우, 바로가기 기능을 통하여 최신 현황을 확인할 수 있도록 하였다. 유관기관에서 정보가 제공되지 않거나 획득에 어려움이 있는 국내 인증현황(TC, TSOA, PMA, PC, TCV) 및 국가간 협정 체결 현황은 항공기 인증 시스템 내에 구현하였다.

그림 4. 유관기관 인증 규정 및 현황 정보
<table>
<thead>
<tr>
<th>구분</th>
<th>대상</th>
<th>정보 출처</th>
</tr>
</thead>
<tbody>
<tr>
<td>법</td>
<td>항공법</td>
<td>법제처</td>
</tr>
<tr>
<td></td>
<td>항공법 시행령</td>
<td>법제처</td>
</tr>
<tr>
<td></td>
<td>항공법 시행규칙</td>
<td>법제처</td>
</tr>
<tr>
<td>운항기술기준</td>
<td>운항기술기준</td>
<td>국토해양부 법령정보</td>
</tr>
<tr>
<td>FSR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>항공기기술기준</td>
<td>Part 1</td>
<td>국토해양부 법령정보</td>
</tr>
<tr>
<td>KAS</td>
<td>Part 1 부록 A ELT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Part 1 부록 B ACAS 기술기준</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Part 21</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Part 45</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Part 34</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Part 36</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Part 22</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Part 23</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Part 25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Part 27</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Part 29</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Part 30</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Part 33</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Part 34</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Part 35</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Part 36</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Part VLA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Part VLR</td>
<td></td>
</tr>
<tr>
<td>기술표준품(TSO)</td>
<td>기술표준품(TSO) 표준시</td>
<td>국토해양부 법령정보</td>
</tr>
<tr>
<td>표준시</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

표 1. 항공기인증시스템(ACS) 관련 인증 규정 및 정보 출처
<table>
<thead>
<tr>
<th>구분</th>
<th>대상</th>
<th>정보 출처</th>
</tr>
</thead>
<tbody>
<tr>
<td>훈령</td>
<td>항공기형식증명지침</td>
<td>국토해양부 법령정보</td>
</tr>
<tr>
<td>Order Documents</td>
<td>감항성개선지시시 발행 및 관리 지침</td>
<td></td>
</tr>
<tr>
<td></td>
<td>정비조직인증 심사지침</td>
<td></td>
</tr>
<tr>
<td></td>
<td>항공기 시험비행 등의 허가지침</td>
<td></td>
</tr>
<tr>
<td></td>
<td>항공기 등의 기술기준 관리절차 지침</td>
<td></td>
</tr>
<tr>
<td></td>
<td>제작증명 및 생산승인 지침</td>
<td></td>
</tr>
<tr>
<td></td>
<td>부품등 제작자증명 지침</td>
<td></td>
</tr>
<tr>
<td></td>
<td>항공기 등의 수리개조 승인 지침</td>
<td></td>
</tr>
<tr>
<td></td>
<td>항공기 등의 부가형식증명 지침</td>
<td></td>
</tr>
<tr>
<td></td>
<td>항공기 기술표준품 형식승인 절차규정</td>
<td></td>
</tr>
<tr>
<td>고시</td>
<td>감항성을수인시 작성 및 사용 절차규정</td>
<td>국토해양부 법령정보</td>
</tr>
<tr>
<td>Notice Documents</td>
<td>항공기등의 제작증명 및 생산승인 기준</td>
<td></td>
</tr>
<tr>
<td></td>
<td>부품등 제작자증명 기준</td>
<td></td>
</tr>
<tr>
<td></td>
<td>비인가부품 또는 비인가의심 부품의 처리 및 부품 사용 등에 대한 기준</td>
<td></td>
</tr>
<tr>
<td></td>
<td>항공기 기술표준품 형식승인 기준</td>
<td></td>
</tr>
<tr>
<td></td>
<td>항공기 등에 관한 수수료</td>
<td></td>
</tr>
<tr>
<td></td>
<td>항공기 소음기준 석행증명 절차규정</td>
<td></td>
</tr>
<tr>
<td>KOCA</td>
<td>항공용 소프트웨어 승인 지침</td>
<td>ACS 내장</td>
</tr>
<tr>
<td>인증지침서</td>
<td>외국 감항당국의 승인을 받은 적합성승인조사료의 수락 지침</td>
<td></td>
</tr>
<tr>
<td>Instruction</td>
<td>감항성유지조치서의 구성요건에 관한 지침</td>
<td></td>
</tr>
<tr>
<td>KOCA</td>
<td>항공용 전자 하드웨어 승인 지침</td>
<td>ACS 내장</td>
</tr>
<tr>
<td>인증안내서</td>
<td>항공용 소프트웨어 인증(RTCA DO-178B) 적용 안내서</td>
<td></td>
</tr>
<tr>
<td>Guidance</td>
<td>소프트웨어 모듈 재사용에 관한 안내서</td>
<td></td>
</tr>
<tr>
<td></td>
<td>항공기 전자장비품의 설계보증(RTCA DO-254) 적용 안내서</td>
<td></td>
</tr>
<tr>
<td>구분</td>
<td>대상</td>
<td>정보 출처</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>----------</td>
</tr>
<tr>
<td>고장, 기능장애 및 결함에 대한 제작자 보고 안내서</td>
<td>항공제품의 환경시험 (RTCA DO-160E) 적용 안내서</td>
<td></td>
</tr>
<tr>
<td>항공기용 복합재 구조물 제작을 위한 품질관리 안내서</td>
<td>항공 기 또는 관련 제품에 사용되는 소프트웨어의 품질보증 안내서</td>
<td>컴퓨터가 생성/저장한 기록의 관리 안내서</td>
</tr>
<tr>
<td>복합재 재료/공정규격서 수락 지침</td>
<td>정비심의위원회 운영 안내서</td>
<td></td>
</tr>
<tr>
<td>기타 자료 Others</td>
<td>Guidance for Korean TC and TC Validation Procedures</td>
<td>ACS 내정</td>
</tr>
<tr>
<td>CPI Guide (1st Edition) - The FAA Type Certification Process</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FAA Conformity Inspection Process, Forms, and Records (Rev. A)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FAA AC 21-2K</td>
<td></td>
<td></td>
</tr>
<tr>
<td>시행 규칙 양식 AAID Form</td>
<td>항공기 표준감항증명 신청서</td>
<td>법제처</td>
</tr>
<tr>
<td>항공기 특별감항증명 신청서</td>
<td></td>
<td></td>
</tr>
<tr>
<td>표준감항증명서</td>
<td></td>
<td></td>
</tr>
<tr>
<td>특별감항증명서</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(표준감항증명서, 특별감항증명서) 재발급 신청서</td>
<td></td>
<td></td>
</tr>
<tr>
<td>운용한계 지정서</td>
<td></td>
<td></td>
</tr>
<tr>
<td>항공기 감항승인 신청서</td>
<td></td>
<td></td>
</tr>
<tr>
<td>부품등 감항승인 신청서</td>
<td></td>
<td></td>
</tr>
<tr>
<td>항공기 감항승인서</td>
<td></td>
<td></td>
</tr>
<tr>
<td>부품등 감항승인서</td>
<td></td>
<td></td>
</tr>
<tr>
<td>소음기준석합증명 신청서</td>
<td></td>
<td></td>
</tr>
<tr>
<td>구분</td>
<td>대상</td>
<td>정보 출처</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>---------</td>
</tr>
<tr>
<td>소음기준적합증명서</td>
<td>형식증명 신청서</td>
<td></td>
</tr>
<tr>
<td></td>
<td>형식설계 변경신청서</td>
<td></td>
</tr>
<tr>
<td></td>
<td>부가형식증명 신청서</td>
<td></td>
</tr>
<tr>
<td></td>
<td>형식증명서</td>
<td></td>
</tr>
<tr>
<td></td>
<td>부가형식증명서</td>
<td></td>
</tr>
<tr>
<td></td>
<td>부가형식증명승인 신청서</td>
<td></td>
</tr>
<tr>
<td></td>
<td>형식증명승인서</td>
<td></td>
</tr>
<tr>
<td></td>
<td>제작증명 신청서</td>
<td></td>
</tr>
<tr>
<td></td>
<td>제작증명서</td>
<td></td>
</tr>
<tr>
<td></td>
<td>수리·개조승인 신청서</td>
<td></td>
</tr>
<tr>
<td></td>
<td>항공기등의 수리·개조 결과서</td>
<td></td>
</tr>
<tr>
<td></td>
<td>기술표준품 형식승인 신청서</td>
<td></td>
</tr>
<tr>
<td></td>
<td>기술표준품 형식승인서</td>
<td></td>
</tr>
<tr>
<td></td>
<td>항공기등 기술기준 개정 신청서</td>
<td>ACS 내정</td>
</tr>
<tr>
<td></td>
<td>기술표준품에 대한 형식승인기준 개정 신청서</td>
<td></td>
</tr>
<tr>
<td></td>
<td>부품등 제작자증명 신청서</td>
<td></td>
</tr>
<tr>
<td></td>
<td>부품등 제작자증명서</td>
<td></td>
</tr>
<tr>
<td>협정 (Bilateral Agreements)</td>
<td>한미 BASA 행정협정(EA)</td>
<td>ACS 내정</td>
</tr>
<tr>
<td></td>
<td>한미 BASA 감항성이행절차(IPA)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>간항성이행절차 번역본</td>
<td></td>
</tr>
<tr>
<td>업무약정 (Working Arrangements)</td>
<td>한호 업무약정(MOU)</td>
<td>ACS 내정</td>
</tr>
<tr>
<td></td>
<td>한호 업무약정 이행절차(IPA for MOU)</td>
<td></td>
</tr>
</tbody>
</table>
항공기인증시스템(ACS)에서는 인증제도별로 법령정보, 기술기준정보, 훈련/고시/수수료와 같은 근거 규정과 함께 상세 인증절차에 대한 정보를 제공하도록 구현하였다.

그림 5. 인증제도 안내 정보구조 설계

항공안전협정은 항공안전 증진에 기여하며, 항공산업계에 부과되는 부담을 경감할 수 있다. 현재까지 우리나라는에서 체결한 감항성 관련 협정 및 업무약정 문안을 제공할 수 있도록 국가간 협정 정보를 최상위 메뉴에 구성하였다.

2008년 기술표준품에 대한 미국과의 항공안전협정 체결 후 다양한 항공기 인증이 수행되고 있다. 국내 인증 진행 현황에 대한 최신 정보를 제공하기 위하여 인증현황을 자체적으로 구현할 수 있도록 데이터베이스 구조를 구성하였다. 제공되는 인증 현황 정보는 다음과 같다.

- 형식증명 현황
- 형식증명승인 현황
- 기술표준품형식승인 현황
- 부품등제작자증명 현황
- 제작증명 현황

형식증명승인 현황의 경우 항공안전관리시스템(ATIS)에서 제공하는 현황 정보도 쉽게 접근할 수 있도록 배너를 왼쪽 측면에 배치하였다.

![Type Certificate (Domestic)](image)

그림 6. 인증 현황 정보 제공
그림 7. 국문 홈페이지 (http://atis.casa.go.kr/ACS/index.asp)

그림 8. 영문 홈페이지 (http://atis.casa.go.kr/ACS/eng_index.asp)
나. 항공기인증시스템(ACS) 개발 환경

항공기인증시스템(ACS)은 국내외 민원인이 쉽게 접근할 수 있도록 항공안전관리시스템(ATIS)의 자원 및 OS를 활용하여 항공기인증시스템(ACS)을 구축하였다.

항공기인증시스템(ACS)은 국내외 민원인이 쉽게 접근할 수 있도록 다음과 같이 다양한 방법을 구현하였다.

(1) 항공안전관리시스템(ATIS)에서 “항공기 인증” 메뉴의 인증안내 클릭 (국문 및 영문 ACS 접근)
(2) 국토해양부(MLTM) 홈페이지 “항공/GIS” 메뉴 클릭 >> “8. ATIS” 클릭을 통해 (1)항으로 이동한 접근.

(3) 국토해양부(MLTM) 홈페이지 배너 클릭(국문)

- 배너 : ![ACS 항공기인증시스템]
 - 링크주소 : http://atis.casa.go.kr/acs/
 - 배너위치 : http://www.mltm.go.kr/portal.do

국토해양부 국문 홈페이지 하단

(4) 국토해양부(MLTM) 홈페이지 배너 클릭(영문)

- 배너 : ![ACS Aircraft Certification System]
 - 링크주소 : http://atis.casa.go.kr/acs/eng_index.asp
 - 배너위치 : http://english.mltm.go.kr/intro.do

국토해양부 영문 홈페이지 하단

(5) ACS 주소 직접 입력 (국문 및 영문 ACS 접근)

- atis.casa.go.kr/acs
다. 항공기인증시스템(ACS) 시험운영 및 프로그램 개발 성과품

2012년 10월부터 2012년 12월까지 시험운용을 통하여 보완사항을 도출하였으며, 이를 보완한 최종 성과품을 별첨 CD에 제공하였다.

- 업무기능분해도
- Use Case Diagram
- 물리 DB 상세설계서
- 화면 및 출력 레이아웃 설계서
- 인증현황자료 업데이트 사용 설명서
- 프로그램 소스코드
3. 국내 공공 시험평가 시설 구축현황 연구

가. 항공기 인증시험평가 시설/설비에 대한 구축현황 파악

1) 국내 시험 인프라 분석

KAI, KARI, 경상대, 삼성탈레스, 생산기술연구원, 전기연구원 퍼스트 등 60여개 국내 산학연 기관에서 보유하고 있는 항공기 인증 시험 평가 관련 시설 및 설비에 대한 현황을 부록 1에 다음과 같이 제시하였다.

<table>
<thead>
<tr>
<th>기술 분야</th>
<th>시험 시설 및 설비</th>
</tr>
</thead>
<tbody>
<tr>
<td>구조 인증 및 재료 인증</td>
<td>(1) 공기역학 분야</td>
</tr>
<tr>
<td></td>
<td>(2) 구조 분야</td>
</tr>
<tr>
<td></td>
<td>(10) 기타</td>
</tr>
<tr>
<td></td>
<td>(11) 복합재 분야</td>
</tr>
<tr>
<td></td>
<td>(9) 회전익기</td>
</tr>
<tr>
<td>동력장치 인증</td>
<td>(3) 엔진 분야</td>
</tr>
<tr>
<td>계통 인증</td>
<td>(4) 전기/전자 분야</td>
</tr>
<tr>
<td></td>
<td>(5) 통신 분야</td>
</tr>
<tr>
<td></td>
<td>(6) 유압 분야</td>
</tr>
<tr>
<td></td>
<td>(7) 착륙장치 분야</td>
</tr>
<tr>
<td></td>
<td>(8) 환경시험 분야</td>
</tr>
<tr>
<td></td>
<td>(10) 기타</td>
</tr>
</tbody>
</table>

기체중량의 감소, 부품수 절감, 제조비 절감등을 위한 복합재 비중 증대는 뚜렷한 추세이다. 항공기의 경우 전기체, 복합제를 이용한 개발이 활발하게 이루어지고 있으며 이러한 추세는
비즈니스 제트급 항공기로 이어지고 있다. 뿐만 아니라 중형 항공기 및 대형 항공기의 개발에 있어서도 복합재의 비중이 날로 증가하고 있어 이에 대한 기술개발 대비가 절실함을 알 수 있다. 국내 4인승 민간 항공기에 대한 인증을 추진하고 있는 한국항공우주산업(주)에서 보유하고 있는 MIL-HDBK-17-1F에 의거한 복합재 평가에 사용되는 시설 및 설비 현황을 부록 1. (11) 복합재 분야에서 다음과 같이 제시하였다.

(가) 복합재 Fiber 물성평가 시험
(나) Uncured Prepreg Physical/Chemical Properties에 대한 Screening Test
(다) Fluid Sensitivity Screening Test (Group I and II)
(라) Cured Lamina의 Mechanical Properties Test
(마) Laminate의 Mechanical Properties Test

회전익기에 대한 설비는 헬리콥터 로터 개발시 충소모델을 이용한 지상시험, 풍동시험 설비, 주로터/꼬리로터/블레이드의 성능, 안정성, 내구성 시험, 피로시험을 위한 설비가 일부 구축되어 있으며, 주기여박스 국산화를 위해서는 주기여박스 인증시험을 위한 시험 설비가 구축되어야 할 필요가 있는 것으로 보인다. 본 과제에서는 고정익 항공기를 중점적으로 시험 시설/설비의 구축현황을 분석하였다.

나. 적합성 입증 방법(Means of Compliance)

형식증명을 획득하고자 하는 대상 항공기에 적용된 모든 기준에 대한 적합성 입증 방법을 정의하여야 하며 적합성 입증방법의 유형은 다음과 같다.

(1) 적합성기록서 (Compliance Statement)
(2) 설계 검토 (Design Review)
(3) 분석 및 해석 (Analysis)
(4) 안전성 평가 (Safety Assessment)
(5) 실험실 시험 (Laboratory Test)
(6) 지상시험 (Ground Test)
(7) 비행시험 (Flight Test)
(8) 검사 (Inspection)
(9) 모사 시험 (Simulation)
(10) 장비 검증 (Qualification)
(11) 운용 경험

시험에 의한 입증과 관련된 항목은 분석 및 해석, 안전성 평가, 실험실시험, 지상시험, 비행시험, 시뮬레이터 모사시험, 장비 검증 시험, (기능/신뢰성 검증을 위한 운용시험(Flight Test for Function and Reliability))이다. 상기에서 분류한 적합성입증방법을 엔지니어링 분야별로 요구되는 주요 시험 및 해석 업무 및 적용 대상을 구분하면 다음과 같다.
표 3. Part 23 및 25 기술분야별 담당 요건 분석

<table>
<thead>
<tr>
<th>Flight Test</th>
<th>Subpart B Flight</th>
<th>Subpart C Structure</th>
<th>Subpart D Design</th>
<th>Subpart E Powerplant</th>
<th>Subpart F Equipment</th>
<th>Subpart G Operating Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>XX.1 - XX.255</td>
<td>XX.301 - XX.581</td>
<td>XX.601 - XX.875</td>
<td>XX.901 - XX.1207</td>
<td>XX.1301 - XX.1461</td>
<td>XX.1501 - XX.1563</td>
</tr>
<tr>
<td>Structures</td>
<td>Secondary</td>
<td>Primary</td>
<td>Secondary</td>
<td>Secondary</td>
<td>Secondary</td>
<td>Secondary</td>
</tr>
<tr>
<td>Propulsion</td>
<td>Secondary</td>
<td>Secondary</td>
<td>Secondary</td>
<td>Primary</td>
<td>Secondary</td>
<td>Secondary</td>
</tr>
<tr>
<td>Mechanical systems</td>
<td>Secondary</td>
<td>Secondary</td>
<td>Primary</td>
<td>Secondary</td>
<td>Primary</td>
<td>Secondary</td>
</tr>
<tr>
<td>Mechanical systems</td>
<td>Secondary</td>
<td>Secondary</td>
<td>Secondary</td>
<td>Secondary</td>
<td>Secondary</td>
<td>Secondary</td>
</tr>
<tr>
<td>Electrical systems</td>
<td>Secondary</td>
<td>Secondary</td>
<td>Secondary</td>
<td>Secondary</td>
<td>Primary</td>
<td>Secondary</td>
</tr>
</tbody>
</table>

표 4. 기술분야별 인증 시험 및 해석

<table>
<thead>
<tr>
<th>구분</th>
<th>시험 및 해석 업무</th>
</tr>
</thead>
<tbody>
<tr>
<td>비행시험 (Flight Test)</td>
<td>Performance Controllability and Maneuverability Stability Stalls Ground and Water Handling Characteristics Miscellaneous Flight Requirements (Vibration, Buffeting, High Speed Characteristics, Out of trim characteristics) ETOPS (Extended Operations) Flight 300hr or 150hr for Function and Reliability</td>
</tr>
<tr>
<td>항공기 소음 (Noise)</td>
<td>Noise Test</td>
</tr>
<tr>
<td>항공기 구조 (Structure)</td>
<td>Static Analysis Dynamic Analysis Fatigue Analysis Flutter/Ground Vibration Safety Analysis Flotation and Ditching Analysis Structural Loading Limitations Material and Process Specifications</td>
</tr>
<tr>
<td>구분</td>
<td>시험 및 해석 업무</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td>동력장치</td>
<td>Engine Installation</td>
</tr>
<tr>
<td>(Powerplant)</td>
<td>Fuel and Oil</td>
</tr>
<tr>
<td></td>
<td>Induction/Exhaust System</td>
</tr>
<tr>
<td></td>
<td>Thrust Reversers</td>
</tr>
<tr>
<td></td>
<td>Fire Protection</td>
</tr>
<tr>
<td></td>
<td>Ice Protection</td>
</tr>
<tr>
<td></td>
<td>Cooling</td>
</tr>
<tr>
<td></td>
<td>Engine Performance/Operations</td>
</tr>
<tr>
<td></td>
<td>Indicating Systems</td>
</tr>
<tr>
<td></td>
<td>Lightning Protection</td>
</tr>
<tr>
<td></td>
<td>HIRF Protection</td>
</tr>
<tr>
<td></td>
<td>Software</td>
</tr>
<tr>
<td></td>
<td>Control System—Electronic/Mechanical</td>
</tr>
<tr>
<td></td>
<td>Emissions</td>
</tr>
<tr>
<td></td>
<td>Vibration(Engine, Prop., or Drive System)</td>
</tr>
<tr>
<td></td>
<td>Propeller</td>
</tr>
<tr>
<td></td>
<td>Drive System</td>
</tr>
<tr>
<td></td>
<td>Transmissions</td>
</tr>
<tr>
<td></td>
<td>Safety Analysis</td>
</tr>
<tr>
<td></td>
<td>Fuel Tank Flammability</td>
</tr>
<tr>
<td>시스템/장비</td>
<td>Detail Design and Installation</td>
</tr>
<tr>
<td>(Systems and Equipment)</td>
<td>Equipment Qualification Tests</td>
</tr>
<tr>
<td></td>
<td>Software</td>
</tr>
<tr>
<td></td>
<td>Safety Analysis</td>
</tr>
<tr>
<td></td>
<td>Flammability</td>
</tr>
<tr>
<td></td>
<td>Electrical Load</td>
</tr>
<tr>
<td></td>
<td>Lightning Protection</td>
</tr>
<tr>
<td></td>
<td>HIRF Protection</td>
</tr>
<tr>
<td></td>
<td>Aircraft Icing Certification</td>
</tr>
</tbody>
</table>

다. 항공기 인증시험평가 시설/설비 분석

1) 구조 인증(Structural Certification) 및 재료 인증(Materials Certification)
항공기의 구조는 하중으로 결정된다. 항공기 제원, 형상, 지상운용, 비행운용 등의 다양한 제약조건을 고려하여 공력시험, FEM해석, 하중 해석 등을 이용하여 하중을 엄밀하게 설정하고 설계자는 하중에 맞추어 정확한 구조를 설계하고, 시험을 통하여 검증하여야 한다.

그림 16. 구조 해석 및 시험 평가의 관계

최근에는 전산구조해석기술의 발달로 인해 강도계산의 정확도가 항상되었으나, 구조강도의 검증을 다음과 같은 Building Block Approach을 통한 기본 물성용 단품(Coupons), 기본 구조재 시험(Elements), 상세 부품 시험(Details), 하위구성품(Sub-components), 상위구성품(Components) 레벨의 단계적으로 시험을 수행한 후, 최종적으로 전기체 항공기 레벨에서의 정적강도시험을 통해 하중을 검증한다.

국내 항공기 구조 관련 인증시험평가 시설/설비는 공력시험, 전산구조해석, 유압장치 시험설비, 작동장치 시험설비, 및 금속재료 시험설비 등이 구비되어 있다. 정기체 항공기 정적강도시험은 T-50, KC-100에 대해서 수행된 바 있다.

100인승 전후의 중소형 항공기급 전기체 정적시험을 수행하기 위해서는 추가적인 시설/설비 구축이 필요한 것으로 판단된다.
전기체 정적구조시험은 국내에서 개발하고자 하는 항공기의 제원에 따라 추가적인 시설 구축이 요구될 수 있다. 보잉에서 적용하고 있는 Building Block Approach 적용 사례를 다음에 제시하였다.

![그림 17. 복합재 고정익 Building Block Tests](image1)

![그림 18. 꼬리 로터블레이트 Building Block Tests](image2)

표 5. Building Block Approach 적용 사례 (보잉)

<table>
<thead>
<tr>
<th>시험 레벨</th>
<th>내용</th>
</tr>
</thead>
<tbody>
<tr>
<td>May involve 1000's of tests</td>
<td>Type</td>
</tr>
<tr>
<td>● Tension modulus and strength</td>
<td></td>
</tr>
<tr>
<td>● Compression modulus and strength</td>
<td></td>
</tr>
<tr>
<td>● Shear modulus and strength</td>
<td></td>
</tr>
<tr>
<td>● Open hole compression</td>
<td></td>
</tr>
<tr>
<td>● Filled hole tension</td>
<td></td>
</tr>
<tr>
<td>● Bearing</td>
<td></td>
</tr>
<tr>
<td>● Compression after impact</td>
<td></td>
</tr>
<tr>
<td>● Compact tension (Mode I)</td>
<td></td>
</tr>
<tr>
<td>● Fatigue</td>
<td></td>
</tr>
<tr>
<td>● Charpy impact</td>
<td></td>
</tr>
<tr>
<td>● Double cantilever beam</td>
<td></td>
</tr>
<tr>
<td>Environmental Conditions</td>
<td></td>
</tr>
<tr>
<td>● Cold, Dry</td>
<td></td>
</tr>
<tr>
<td>● Ambient</td>
<td></td>
</tr>
<tr>
<td>● Hot, Wet</td>
<td></td>
</tr>
<tr>
<td>Flammability, Smoke, Toxicity</td>
<td></td>
</tr>
</tbody>
</table>

Tensile Coupon Test
<table>
<thead>
<tr>
<th>시험 레벨</th>
<th>내용</th>
</tr>
</thead>
</table>
| **Element Test** | May involve 100’s of tests
Types
Bolted joints
Riveted joints
Bonded joints
Pull off
Radius bend
Single shear
Double shear
Shear tension test
Bearing bypass
Three point bend
Four point bend
Environmental conditions
Burn through testing |
| **Details & Sub-component Testing (Fuselage Panel Testing with Damage & Repairs)** | May involve dozens of tests
● Compression panels
● Shear-compression panels
● Tension panels
● Internal pressure panels
● Acoustic panels
● Durability & damage tolerance
● Stability (Buckling) |
| **Full-scale Component Testing** 2004, B777 Horizontal Stabilizer | ● Global stability
● Static limit
● Static ultimate
● Fatigue
● Sonic fatigue |
또한, 재료의 물성치가 표준화된 금속재 소재와는 달리, 복합재와 같이 물성값에 대한 설계 허용값을 결정할 필요가 있는 신규 재료가 개발되어 항공기에 사용되어지는 경우, 별도의 재료 인증 과정을 거쳐 항공기 구조에 사용되는 재료가 적합함을 입증하여야 한다. 보잉의 경우, 새로운 재료를 선정하기까지 46개월 내지 191개월(평균 58개월)이 소요되는 것으로 알려져 있다.

<table>
<thead>
<tr>
<th>TASK</th>
<th>Y1</th>
<th>Y2</th>
<th>Y3</th>
<th>Y4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screening of Prepregs (9 months)</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>Prequalification (8 months)</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>-Pre-Q 1</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>-Pre-Q 2</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>Go-No Go Decision (3 weeks)</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>Qualification Tests (20 months)</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>-Mail on Board</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>-Conduct Spec. Tests</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>-Dev. Allowable & Design Values</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>-Retest Allowables LNC & LNT</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>-Perform Elmt & Sub-Compt. Test</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>-Re-testing</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>-Perform Productivity & Shop Tests</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>Document & Implement</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
</tbody>
</table>

그림 23. 보잉 신규 재료 선정 시험 절차(예시)
2) 계통 인증

항공기 계통은 항공기 장착시 안전한 작동이 보장되어야 한다. 이를 위해 설계(Design), 개발(Development) 및 인증(Certification) 활동에는 단계별로 안전성 평가 업무가 동반되어야 하며, 평가 대상의 고장 또는 오작동으로 인하여 발생하는 영향에 대하여 심각도(Severity), 복잡도(Complexity), 중복 구조(Redundancy), 과거의 사용 이력 또는 운용 경험에 따라 세분화된 안전성 요건이 적용된다.

항공기 계통과 관련된 인증 시험 및 해석에 대한 사항은 표 4를 참조한다. 항공기 계통은 개별 시험 및 해석이 항공기에서의 의도된 성능(Intended Function)과 할당된 안전성 요구도에 따라 달라진다.

2012년 12월 현재 미연방항공청(FAA)은 항공기 기술표준품으로 총 153종을 고시하고 있다. 이를 통해 항공기 장착하는 계통에 대한 시험 요구도를 이해할 수 있다.

그림 24. 항공기 계통 개발 절차 및 안전성 평가 규격
기술표준품(Technical Standards Orders)는 성능 기반(Performance-based) 규격으로서, 형식증명을 획득하기 위해서는 성능 규격, 환경 규격, 소프트웨어 규격, 전자하드웨어 규격에서 요구조건 및 시험을 모두 충족하여야 한다.

따라서, 안전성 평가 기법과 함께, 전기전자 하드웨어 개발 지침 RTCA DO-254, 소프트웨어 개발 지침 RTCA DO-178B, 항전장비 환경시험 지침 RTCA DO-160()을 적용할 수 있는 인증 인프라가 구축되어야 할 것이다. 국내에 구축된 전기/전자 분야, 통신 분야, 유압 분야, 착륙장치 분야, 환경시험 분야 등에 관련된 시험 설비 및 장비는 부록 1을 참조한다.
표 6. 미연방항공청 기술표준품 현황(2012.12.)

<table>
<thead>
<tr>
<th>대분류</th>
<th>계</th>
<th>소분류</th>
<th>표준수수</th>
</tr>
</thead>
<tbody>
<tr>
<td>항공전자</td>
<td>84</td>
<td>기록장치</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>엔진/비행계기</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>충돌 및 기상회피</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>통신장비</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>항법장비</td>
<td>28</td>
</tr>
<tr>
<td>항공전기</td>
<td>14</td>
<td>배터리</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>보조동력</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>자동조종</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>전원장치</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>항공등</td>
<td>2</td>
</tr>
<tr>
<td>항공기시스템</td>
<td>19</td>
<td>냉난방계통</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>산소장비</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>연료/오일/유압</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>호스조립체</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>화재탈치</td>
<td>5</td>
</tr>
<tr>
<td>피난/생존장비</td>
<td>11</td>
<td>교신장치</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>생존장비</td>
<td>5</td>
</tr>
<tr>
<td>착륙시스템</td>
<td>5</td>
<td>착륙장치</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>타이어/휠/브레이크</td>
<td>3</td>
</tr>
<tr>
<td>비착장치 및 부품</td>
<td>20</td>
<td>기타 비착장치</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>내장품</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>보호장치</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>부품</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>적재장치</td>
<td>1</td>
</tr>
<tr>
<td>총계</td>
<td>153</td>
<td>총계</td>
<td>153</td>
</tr>
</tbody>
</table>
표 7. FAA 기술표준품 153종에 대한 최소성능표준(MPS) 시험 요건 분석

<table>
<thead>
<tr>
<th>성능 시험</th>
<th>환경 시험</th>
<th>소프트웨어 검증</th>
<th>하드웨어 검증</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functional</td>
<td>Environmental</td>
<td>RTCA DO-1600(92종)</td>
<td>RTCA DO-254(44종)</td>
</tr>
<tr>
<td>SAE (56종)</td>
<td>RTCA (56종)</td>
<td>RTCA DO-1780(88종)</td>
<td>-</td>
</tr>
<tr>
<td>RTCA DO-1780(88종)</td>
<td>EUROCAE (7종)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TSO 부록 (25종)</td>
<td>MIL (3종)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>EUROCAE (7종)</td>
<td>NAS (5종)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MIL (3종)</td>
<td>UL (1종)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>NAS (5종)</td>
<td>기타 (1종)</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

3) 동력장치 인증

항공기 동력장치 계통은 기본적으로 형식증명된 엔진, 프로펠러를 사용하지만, 계통과 마찬가지로 적용 항공기에 통합상태에서 안전성 요구도, HIRF, 낙뢰, 하드웨어/소프트웨어/환경 요구도에 대한 검증이 이루어져야 한다. 또한, 항공기 성능 및 운용에 관련된 요건, 화재방지, 제병, 운용제한사항 등에 대한 검증이 시험을 통해 이루어진다.

(1) Fire Extinguishing
(2) Nacelle Cooling
(3) Fuel Consumption
(4) Engine Operability (In-flight starting)
(5) Oil and Fuel System Testing
(6) Aircraft Performance
(7) Natural Icing 등.

동력장치는 항공기 성능에 밀접한 영향을 갖고 있으므로 Part 33 및 Part 35에 의한 엔진, 프로펠러에 대한 인증과 병행하여 진행되는 경우가
그림 25. 항공기용 엔진 인증시험 및 비행 시험

국내에 구축된 동력장치 분야에 관련된 시험 설비 및 장비는 부록 1을 참조한다.

4) Icing 인증 시험 설비 현황

Icing 인증은 선박사항이나 비지니스젯, 중소형, 대형 비행기의 운용 효율을 위해 반드시 거쳐야 하는 인증시험 항목에 해당한다. 평등을 이용한 Icing Shape 예측, 자연결빙 조건 및 인공 결빙 조건에서의 비행시험 및 지상시험, 관련 제빙장비의 성능에 대한 특성평가 시험 등이 수행되어야 한다. 국내에서는 T-50 개발 과정에서 저온 운용시험이 적용된 바 있으나, 민간 인증에서 Icing 인증은 현재까지 수행되지 아니 하였다.
5) 낙뢰 시험 설비 현황

RTCA DO-160(Section 22) 시험에는 Pin Injection 및 Cable Bundle 시험이 있으며 이를 위한 시험 장비가 구비되어 있고 장비/시스템 레벨의 낙뢰 유도 과도현상 감응성 시험(Lightning Induced Transient Susceptibility)을 수행 할 수 있다. 그러나, 시편에 낙뢰 전류를 직접 인가하는 낙뢰 직접 영향 시험 및 전기체 레벨의 낙뢰 간접 영향 시험은 시험 설비가 없는 관계로 수행 불가하다.

한국항공우주산업주식회사(KAI)에서 개발하고 있는 4인승 소형항공기(KC-100)의 경우 미국 소재의 LTI (Lightning Technology Inc.) 업체에서 항공기 시편을 이용한 낙뢰 직접 영향 시험을 수행하였고, LTI 엔지니어 및 장비를 KAI로 들여와 전기체 레벨의 낙뢰 간접 영향 시험을 수행하였다. 낙뢰 직접 영향 시험을 통하여 기체의 손상 및 연료 탱크의 점화 가능성을 분석하고, 낙뢰 간접 영향 시험을 통하여 전기체 레벨에서 유도되는 낙뢰 전류를 모사한 후 각 시스템의 내성을 분석, 평가하여 최종 낙뢰 보호 설계에 대한 적합성을 판단할 수 있게 된다.

그림 26. Icing Wind Tunnel (Boeing)
6) HIRF 시험 설비 현황

HIRF 보호성능을 입증하기 위한 시험방법은 항공기수준 시험, 통합시스템수준 시험, 개별장비수준 시험으로 구분된다. 항공기수준 시험인 경우, 시험방법에 따라 고강도 시험(High Level Test)와 저강도 커플링 시험(Low Level Coupling Test)로 분류된다. 또한, 시험설비의 장소에 따라 구분하면 야외(Outdoor) 시험설비와 실내(Indoor) 시험설비로 구분된다. 일반적으로 FADEC과 같이 HIRF 보호 수준이 높아야 하는 시스템인 경우, 어느 하나의 항공기수준 시험이 필수적으로 요구된다.
국내 HIRF 시험 설비 현황은 항공기수준 시험에서 저강도 커플링 시험방법은 국방과학연구소 서산 항공시험장의 무반향(Anochoic) 챔버에서 가능하다. 단, 챔버 크기 제한사항으로 소형기급에 한하여 가능하다. 서산 항공시험장인 경우 고강도 항공기수준 시험은 고출력 RF 생성 설비가 구축되어 있지 않아 불가능하다. 또한, 국내의 아외 고강도 항공기수준 시험을 위한 설비도 전무한 상태이다.

그림 29 항공기수준 저강도 커플링시험 (ADD)

RTCA DO-160() Section 20에 의한 통합시스템수준과 개별 장비수준의 HIRF 시험은 국내에서 수행가능하다. 중소형, 대형 비행기에 적용되는 전기체 레벨 HIRF 시험은 국내에 시험설비가 구축되어 있지 않다.

에어버스사는 A380 항공기 개발시 낙뢰 간접영향과 HIRF 방호 인증 요구조건 만족을 위하여 전달함수 결정 방식을 이용한 시험방법을 채택하여 수행하였다. 이를 통해 외부 전자기장의 영향을 동시에 평가하였다.
7) 시험 및 설비 구축 현황

국내 구축된 시험 설비 및 시설에 대한 현황 조사 및 국내 최초로 수행되고 있는 KC-100 형식증명 경험을 통해 국내에서 시험이 불가한 시험 항목을 다음과 같이 도출하였다.

- 중소형항공기 정적강도시험 설비
- 중소형항공기 저강도 커플링 HIRF 시험 설비
- 중소형항공기 고강도 커플링 HIRF 시험 설비
- 직접 낙뢰 시험 설비
- 항공기 결빙 해석 및 시험 설비

미래에 소요되는 장비/시설을 도입 여부는 국내에서의 항후 인증 수요 및 장기적 활용성 등이 구체화되는 시점에 추가적인 연구를 통해 결정되어져야 할 것이다.
4. 무인항공기 등의 인증기준 수립방안 연구

가. 외국의 무인기 인증기준 동향 조사

1) ICAO의 무인항공기 정책 동향

ICAO는 현저한 항공교통체계가 유인항공기 위주로 운용되고 있기 때문에, 조종사가 탑승하여 조종하지 않는 무인항공기의 경우에는 일반 공역에 자유롭게 진입할 수 없도록 제한하도록 규정하고 있었다. 즉, ICAO 회원국은 민간 공역에서 무인항공기의 비행으로 인한 유인항공기의 위험과 지상 인구 밀집지역에 대한 피해를 방지하도록 국제민간항공협약(Convention on International Civil Aviation) 제8조(Pilotless Aircraft)에 따라 다음과 같은 사항을 준수하도록 규정하고 있다.

(1) 무인항공기의 비행을 위해서는 특별한 허가(Special authorization)를 받아야 함.
(2) 무인항공기는 특별한 허가의 제한조건을 준수하는 범위에서 비행하여야 함.
(3) ICAO 회원국은 민간 공역에서 무인항공기의 비행으로 인한 민간 유인항공기의 위험이 발생하지 않도록 관리해야 함.

이에 따라 각 국은 무인항공기에 대한 비행허가(Permit to flight) 제도를 통해 특정 제한공역 내에서의 일시적인 비행만을 허용하는 방식으로 관리해왔다. 하지만 급격하게 증가하는 무인항공기의 수요 및 활용 가치로 인해 무인항공기의 공역 진입과 활용을 제한하는 관리 정책은 한계에 도달하여, 2007년부터 ICAO는 무인항공기시스템 연구그룹(UASSG, Unmanned Aircraft System Study Group)을 결성하여 무인항공기와 관련 업무에 대한 국제적 상호협력, 무인항공기 관련 규정
및 메뉴얼 개발, 기술적 세부사항과 SARPs의 개정에 대한 연구를 진행하고 있다. UASSG에 참여하고 있는 국가는 호주, 오스트리아, 브라질, 캐나다, 중국, 체코, 프랑스, 독일, 이탈리아, 네덜란드, 뉴질랜드, 노르웨이, 러시아, 싱가포르, 남아프리카공화국, 스웨덴, 영국, 미국 등 18개국이며, 이외에도 CANSO, EASA, EUROCAE, EUROCONTROL, IAOPA, ICCAIA, IFALPA, IFATCA, NATO, RTCA, UVS International 등의 기관에서 참여하고 있다.

ICAO는 무인항공기 중 원격으로 조종 가능한 무인항공기만을 민간 공역에 진입 가능한 무인비행체로 제한하고, 원격조종항공기(RPA, Remotely Piloted Aircraft)라는 용어를 새롭게 정의하였다. 다음 그림에서와 같이 탑재된 센서 및 컴퓨터를 이용하여 지정된 경로를 따라 스스로 비행하면서 임무를 수행하는 개념의 무인항공기는 일반 공역에 진입하는 것은 현재와 동일하게 제한될 것이며, 항공기 외부에서 원격으로 조종할 수 있는 무인항공기만을 관리 대상으로 규정하고 있다.

2005년 4월 12일 개최된 제169차 ICAO 항행위원회에서는 민간 공역에서의 무인비행체 운영에 대한 협의 필요성이 제기되었다. 이는 국가항공기로서 운용되는 무인비행체로 인해 유인 민간항공기가 받게 되는 위험을 방지하고, 민간 무인비행체 운영을 위한 특별운용허가 기준을 마련하기 위한 것이었다.

2006년 5월 23~24일에는 무인비행체(UAV)에 대한 규정을 마련하기 위한 ICAO의 정책적 역할을 알아보기 위한 목적으로 무인비행체(UAV)에 대한 예비 회의가 캐나다 몬트리올에서 열렸다. 이 회의에서 무인항공기와 관련된 SARPs의 제정은 ICAO가 중심이 되어 수행하기에는 적절하지 않다는 의견이 제시되었으나, 무인항공기에 대한 개념, 정의, 용어 등의 표준화의 필요성은 인정하였다. 2007년 1월 11~12일에는 무인항공기에 대한 ICAO의 비공식 회의가 플로리다
팜코스트에서 열렸다. 이 회의에서는 무인항공기 운용에서의 기술적 세부사항은 RTCA(Radio Technical Commission for Aeronautics)와 EUROCAE(European Organization for Civil Aviation Equipment)의 두 스터디 그룹에게 위탁하여 제정하는 것으로 결정하였다.

그림 32. 원격조종항공기(RPA)에 대한 구분

2008년 4월 7~10일에는 캐나다 몬트리올에서 UASSG의 첫 공식 회의가 개최되었으며, 호주, 캐나다, 미국, 영국 등의 14개 국가와 EUROCONTROL, IFALPA 등 8개 기관 대표가 참석하였다. UASSG의 역할은 무인항공기와 관련된 국제 상호협력 및 조율을 위해 지역적 조력, 무인항공기 관련 규정 및 메뉴얼 개발, 기술적 세부사항을 결정하고, ICAO의 다른 조직과 협조하여 SARPs의 개정안을 마련하는 것 등으로 의견하였다. 2011년 11월 17일 개최된 제188-6차 ICAO 항행위원회 회의에서는 국제민간항공협약 부속서 2(Rules of the Air) 및 부속서 7(Aircraft Nationality and Registration Marks)에 무인항공기 관련 규정안의 국제기준을 신설하는 안을 승인하였다. 또한, 2012년 3월 제195차 이사회
本委员会通过 Annex 2, 6, 7, 10, 11 的 7 个事项，对有关规定进行了补充。此规定于 2012 年 7 月 16 日公布，并于 2012 年 11 月 15 日开始实施。此规定对无人航空器相关的条款内容是 Annex 2 (Rules of Air) 中所包含的内容，并且主要内容如下。

表 8. ICAO Annex 2 无人机相关内容

<table>
<thead>
<tr>
<th>Chapter 3. 一般原则</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 人员和财产保护</td>
</tr>
</tbody>
</table>
| 3.1.9 远程操控航空器 (Remotely-piloted aircraft) : RPA 是人员、财产或其它的航空器所可能带来的危险，应以安全的方式进行，并且应基于 Appendix 4 进行运行。

Appendix 4 (RPAS)

1. 一般运行规则
2. 证明书及许可
3. 起飞许可申请

Appendix 7 (Aircraft Nationality and Registration Marks)

1. 定义：无人操控航空器 (RPA: Remotely-piloted aircraft) 的定义 - 远程操控基地中由操控者控制的无人航空器
2. 航空器分类(Classification of Aircraft)
 2.1 航空器应按照 Table 1 进行分类。
 2.2 如未有人员操控的航空器，则应标记为无人 (unmanned)。
 2.3 无人航空器包括无人自由气球，由远程操控器控制的航空器。
9. 附录

- 39 -
9.1 모든 항공기는 최소한 국적 또는 공통부호 및 등록기호가 들어있는 등록기호표(식별판)을 탑재하여야 한다. 이 표(식별판)는 방화 금속이나 방화 물성이 있는 재료로 만들어져야 한다.

9.2 등록기호표는 주(main) 출입구 근처의 잘 보이는 위치에 부착되어야 한다.
 a) 무인 자유기구인 경우, 눈에 잘 띄는 payload 외부에 붙여야 한다.
 b) RPA의 경우, 주(main) 출입구 또는 격실(compartment) 근처의 잘 보이는 위치에 부착하거나 주 출입구나 격실이 없는 경우 항공기 외부에 잘 보이는 위치에 부착되어야 한다.

9.3 RPA의 등록기호표에는 운영자의 이름과 연락처 정보 및 운영자와 소유자가 다를 경우 운영자와 소유자의 이름 및 연락처가 명기되어야 한다.

이는 무인항공기에 대한 제도의 도입이 긴급하게 요구되는 회원국에게 보다 구체적인 방향을 제시하기 위한 것으로서, 실용적인 접근을 위해 정책적인 기준을 우선 제시하고 있다. ICAO는 총회 결의안 A37-15 Appendix G를 통해 무인항공기 카테고리, class 또는 형식과 관련한 국제 기준의 발효되기 이전에는 해당 무인항공기(RPA) 등록국가가 그 국가의 법규에 준하여 인증하도록 규정하고 있다. 단, 무인항공기에 대한 Category, Class 또는 Type 등과 같은 국제 기준이 수립된 이후에는 모든 회원국이 이를 준수하여야 한다고 명문화하고 있다. 이 경우에도 다른 국가의 영토를 통과하거나 이착륙하기 위해서는 다른 회원국의 동의가 필요하다는 것으로 결의하였으며, 관련 내용은 부속서 2의 Amendment 43 중 Appendix 4 (Remotely Piloted Aircraft Systems)에 반영하였다. 이와 같은 사항은 현행 ICAO SARPs에는 무인항공기의 형식증명을 위한
기술기준 및 원격조종사의 자격승인 등에 대한 세부기준이 포함되지 않았으므로, 개별 회원국이 현재까지 제시된 기준을 충족하는 제도 및 기준을 개발하여 자국내에서 적용하는 것에 대해서는 허용한다는 것이다. 하지만 타국의 영토를 통과하거나 이착륙하기 위해서는 해당 국가에 의하여 인정되어야 한다고 제한하고 있으며, 이는 기술기준 및 자격승인 기준에 대해서 국제적 harmonization이 필요하다는 의미이다.

ICAO는 민간 무인항공기를 제도권 내로 수용하기 위하여 무인항공기에 대한 제도의 도입이 급급하게 요구되는 회원국에 명확한 방향을 제시하기 위한 목적으로 2011년 3월 10일자로 Cir 328 (Unmanned Aircraft Systems(UAS))을 발간하였다. 이 문서를 통해 ICAO는 국제적으로 일관된 법규 및 제도를 회원국의 실정에 부합하게 구축할 수 있도록 다음과 같은 내용을 포함하고 있으며, 실용적인 접근을 위해 정책적인 기준을 우선 제시하고 있다.

(1) 무인항공기 관련 ICAO 정책 및 체제
(2) 용어 정의
(3) ICAO 협약을 고려한 법적 고려사항
(4) 무인항공기 운용 : 항공 규칙, 항공교통관제(ATM), 탐색구조(SAR), 항공 보안(AVSEC), 공항, 환경 등
(5) 장비품 : 항공기, 원격조종국, 항법시스템 등
(6) 인력 (원격조종사, 항공교통관제사)

ICAO는 무인항공기에 대한 기준 및 표준을 제정하기 앞서 감항증명, RPAS 승인, 운용자 인증, 감항증/정비/운용 등에 대한 새로운 내용이 포함된 지침서를 2014년 초까지 개발할 것이며, 2016년부터 2018년까지는 무인항공기 및 시스템 관련 SARPss(standards and recommended practices) 및 PANs (procedures for air navigation)을 제정하는 것을 목표로 제시하고
있다. 또한, 2020년부터 2023년까지는 SARPs에 대한 개정 보완을 비롯해서 활주로 요건 및 ATM 절차 등을 확정할 것이고, 최종적으로 무인항공기 관련 모든 제도, 절차, 규정 및 기준 등을 2028년까지 완성하겠다는 계획을 최근 발표하였다.

2) 미국의 무인항공기 정책 동향

FAA(미연방항공청)의 기본적인 정책 목표는 미국 공역에서의 안전을 확보하는 것으로서, 공역을 비행하는 다른 사용자나 지상의 인명 또는 재산에 대한 안전 확보가 최우선 사항이다. 이에 따라 무인항공기에 대해서도 운용 목적과 안전에 대한 영향성에 따라 운영 및 안전 요구 수준을 차등 적용하고 있으며, 현재까지도 민간 무인항공기에 대해서는 유인기와 동등한 표준 감항증명 및 형식증명을 발행하고 있지 않은 상황이다.

현재까지 FAA는 무인항공기에 대하여 형식증명을 발행하지 않고 있으며, 비행허가를 통해 제한적인 비행만 허용하고 있고 일상적인 공역에서의 비행은 불허하고 있다. 이는 무인항공기 시스템 기술의 미성숙과 이로 인한 안전성 확보기준이 없기 때문이다. 다만, 중점활동용 소형 무인비행장치 또는 모형비행기에 대해서는 AC 91-57를 제정하여 400ft AGL 미만에서 운용하고 공항이나 항로와 거리를 두어 제한된 비행을 허가하고, Experimental Category의 특별감항증명(Special Airworthiness Certificate) 및 COA(Certificate of waiver or Authorization)의 2가지 비행허가 제도를 통해 일부 제한된 영역에서의 비행만을 허용한다.

특별 감항증명(SAC-EC)은 미국 공역 내에서 민간 용도로 무인항공기를 운용할 수 있는 유일한 방법이다. 이것은 대가를 받고 사람이나 물건을 수송하는 것이 금지되고 연구개발, 시장조사, 훈련 등의 목적으로 운용이 허용된다. FAA는 2005년부터 무인항공기에 특별
감항증명을 발행하기 시작하여 2010년 7월까지 17개 형식의 무인항공기에 대하여 71건의 특별 감항증명을 발행하였다. 무인항공기 특별 감항증명에 대한 기준은 FAA Order 8130.34A "Airworthiness Certification of Unmanned Aircraft Systems and Optionally Piloted Aircraft"이며, 주로 운용의 책임, 운용절차, 기본적인 시스템 안전성을 검사하고 시스템 안전성 수준에 따라 운용 중 사고의 발생 시에도 제3자에 위험을 초래할 수 있는 가능성이 최소화하도록 운용을 제한 또는 한정한다.

COA는 운용자에게 설정된 공역 내에서만 운용할 수 있게 하는 것으로서, 정부가 운용하는 무인항공기나 공공의 목적으로 비행하고자 하는 무인항공기에 발행되며, 운용 기간과 운용 시간 또는 방법이 제한된다. COA가 발행되더라도 ATC와의 협조 또는 특정 공역에서의 Transponder 장착 등이 요구되기도 한다. 대부분의 무인항공기는 FAR 91.113의 충돌회피 요건을 만족할 수 없기 때문에 제한공역 밖에서 운용할 때는 지상감시자 또는 추적항공기를 활용한 육안 확인이 요구된다.

FAA는 무인항공기의 운용 및 인증에 관한 새로운 정책, 절차 및 인증제도, 기술기준 개발을 위하여 다음과 같은 연구를 수행하고 있다.

(1) UAPO(Unmanned Aircraft Program Office) 설립 및 ATO(Air Traffic Organization)와 협조 하에 무인항공기의 안전하며 효율적인 공역 내 통합운용 방안 연구
(2) 무인항공기의 공역 내 운용을 위한 운항절차, 법규정 및 정책을 개발하기 위하여 무인항공기 협회 등 관련 기관과의 협조
(3) 무인항공기의 Communication, Command, Control 및 충돌회피 방안에 대해서는 RTCA(Radio Technical Commission for Aeronautics)에 위탁하여 연구 진행
(4) 다른 나라의 인증당국과의 기술기준, 정책, 절차 및 법규의 통일을 위한 연구

미국 오바마 대통령은 2012년 2월 14일 FAA에 국가공역에서 무인 항공기를 운용하는 제반 법령 및 규정을 제정하는데 634억달러의 예산을 배정하는 법안에 서명하였으며, 이 법안은 미국의 국가공역에서의 소형 무인기 사용을 즉각적으로 허용하므로 무인기의 보급에 크게 기여할 것으로 보이며, 중장기적으로는 2015년 이후 모든 급의 민간용 무인기의 보급을 촉진하는데 큰 역할을 할 것으로 보인다. 이 법안은 미국뿐만 아니라 유럽 및 다른 나라에서의 무인기 보급의 근거 마련에 많은 영향을 끼칠 것으로 보이며, 주요 내용은 다음과 같다.

(1) 민간용 무인항공기 시스템을 국가 공역 체계(NAS, National Airspace System) 내에서 비행할 수 있도록 2015년 9월 30일까지 제도 구축
(2) 무인항공기 시스템 관련 산업체의 의견을 수렴하여 세부 계획을 9개월 이내에 수립
(3) 무인항공기 시스템과 관련된 5년간의 FAA 로드맵 제시
(4) 25kg (55lbs) 이하의 소형 무인비행장치에 대한 비행허가 방안을 27개월 이내에 제시
(5) 6개월 이내에 6개의 시험장 확보
(6) 미국 극지역에 한해, 25kg (55lbs) 이하의 소형 무인비행장치에 대해서는 시계 이상의 2,000ft 이상 고도에서 비행할 수 있도록 1년 이내에 승인제도 마련
(7) 법 집행, 화재 진화, 비상대응 등과 같은 공공 목적의 무인항공기 운용에 대해서는 공역 진입을 조속하게 허용
(8) 2kg (4.4lbs) 이하의 초소형 무인비행장치에 대해서는 해당 요건을 충족할 경우, 비행을 승인받을 수 있도록 90일 이내에 제도 마련
(9) 무인 항공기의 인적 요소와 사고 원인에 대한 연구를 FAA에서 진행

민간 무인항공기에 대한 지침 및 기준을 제시하지 않고 있던 FAA는 이 법안으로 인해 민간 무인항공기에 대한 연구를 보다 활발하게 진행할 것으로 예상되며, 최근에는 다음과 같은 내용이 포함된 무인항공기 인증을 위한 중기 전략을 제시하였다.

(1) 소형 무인기 운용 규정 제정 (14 CFR, Part 107)
(2) 무인항공기 표준 제정 (C2 및 Sense and Avoid 등)
(3) 무인항공기 관련 사항을 반영한 기존 FAR 개정
(4) 새로운 FAR 추가 제정
(5) 지침서 (Guidance Material) 발간

3) 유럽의 무인 항공기 정책 동향

EASA는 150kg 이하의 소형 무인비행장치에 대해서는 유럽연합의 각 국가 인증당국이 자체적으로 비행허가 및 관리하도록 규정하고 있으며, 다음 표와 같이 4가지 등급으로 구분하여 비행고도, 제어거리 및 제어방식을 제한하고 있다. 또한, 오스트리아, 벨기에, 체코, 프랑스, 독일, 이탈리아, 네팔랜드, 스페인, 영국 감항당국과 EASA 및 Eurocontrol이 참여하는 JARUS (Joint Authorities for Rulemaking Unmanned Systems)라는 조직을 결성하여 150kg 이하의 무인비행장치 또는 연구개발 목적의 민간 무인 항공기 시스템에 대한 기술기준, 운용 및 공역 요구조건 등을 개발하고 있다.
표 9. EASA 무인 비행 장치 분류

<table>
<thead>
<tr>
<th>구분</th>
<th>중량</th>
<th>비행고도</th>
<th>제어거리</th>
<th>제어방식</th>
</tr>
</thead>
<tbody>
<tr>
<td>Micro</td>
<td>MTOM < 1.5kg</td>
<td>< 150m AGL</td>
<td>< 500m from pilot</td>
<td>Flight in Visual Line of Sight</td>
</tr>
<tr>
<td>I</td>
<td>1.5kg < MTOM < 7kg</td>
<td>> 150m AGL</td>
<td>> 500m from pilot</td>
<td>Flight beyond Visual Line of Sight</td>
</tr>
<tr>
<td>II</td>
<td>7kg < MTOM < 20/25kg</td>
<td>> 150m AGL</td>
<td>> 500m from pilot</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>20/25kg < MTOM < 150kg</td>
<td>> 150m AGL</td>
<td>> 500m from pilot</td>
<td></td>
</tr>
</tbody>
</table>

150kg 이상의 무인항공기에 대해서는 EASA의 정책 문서인 Doc E.Y013-01을 통해 형식증명을 비롯한 유인항공기와 동등한 수준의 인증제도 적용을 명문화하고 있으나, 아직까지는 형식증명에 적용되는 기술기준이 개발되지 않아 실제로 적용하는 못하고 있다. EASA에서 제시하고 있는 무인항공기에 대한 정책은 다음과 같다.

(1) Regulation (EC) No 216/2008에 따라 최대 이륙중량 150kg 이상의 무인항공기 시스템은 형식증명을 받아야 하며, 형식증명을 위한 기준(Type Certification Basis)으로 적용하기 위한 감항기술기준 및 환경기준은 향후 개발 예정임.
(3) 기술기준 또는 환경기준을 저하시킬 수 있는 기능 및 관련 장비품에 대한 요건은 형식증명 기준에 포함되어야 함.
(4) 무인항공기 시스템의 형식증명 기준은 동급 유인항공기에 적용되는 CS(Certification Specification) 요건을 변경하여 적용함.
(5) 무인항공기 시스템에 대한 시스템 안전성평가가 요구됨.

(6) 다음과 같은 사항은 특수기술기준(Special Condition)으로 적용함.
 - Emergency Recovery Capability
 - Command and Control Link
 - Level of Autonomy
 - Human Machine Interface
 - Control Station
 - Due to type of Operation
 - System Safety Assessment

(7) 계속 감항성에 대한 요건은 Part M 적용

(8) 환경기준은 다음을 적용함.
 - 소음 : ICAO Annex 16 Volume I 중 무인항공기 관련 항목
 - 배출 : ICAO Annex 16 Volume II 중 무인항공기 관련 항목

EASA는 UCARE(UAVs Concerted Actions for Regulations), JAA-EUROCONTROL, EUROCAE와 같은 기관과 협력하여 형식증명을 위한 기술기준 및 특수기술기준의 제정 등과 같은 인증절차를 연구하고 있다. JAA-EUROCONTROL TF팀은 이미 JAR-VLR/VLA을 기준으로 무인항공기 비행체에 대한 적응성을 항목별로 검토한 사례가 있으나, 이 자체도 무인항공기 비행체의 적응성이 완전하지 않아 기준으로 정립하지 못하고 있다. 다만 대형 무인항공기의 기술기준 개발을 위하여 EURO UVS를 중심으로 업체와 정부가 활발한 연구 활동을 수행 중에 있으며, 다음과 같은 사항에 대한 연구를 진행하고 있다.

(1) 무인항공기 감항성 인증을 위한 법 제계

(2) 무인항공기 감항성 정의의 해석
(3) 형식증명 기준(TC Basis)에 포함되어야 할 무인항공기 시스템 요소
(4) 형식증명 기준(TC. Basis)의 설정
(5) 무인항공기 시스템 안전성 목표 및 기준(Criteria)
(6) 기존 유인항공기 기술기준의 Tailoring
(7) 비상회복(Recovery) 시스템
(8) 통신링크(Communication link)

군용 무인항공기에 대한 기술기준인 STANAG 4671은 이륙중량 150~20,000kg인 고정익 무인항공기에 대한 것으로, EASA에서 제시하고 있는 형식증명 기술기준 수립 정책과 유사한 방법으로 제정되었다. 이에 따라, EASA는 민간용 무인항공기에 대한 기술기준이 제정되기 이전까지는 신청자가 요청하는 경우, 다음 2가지 사항에 대하여 EASA Doc E.Y013-01을 통해 제시된 기준을 충족한다면 STANAG 4671 또는 최신 개정판을 형식증명 기준으로 적용할 수도 있도록 허용하고 있다.

(1) 해당 무인항공기가 CS-23의 단발항공기와 동등한 수준의 안전성이 요구된다는 것이 확인된 경우 (EASA Doc E.Y013-01의 Appendix 1에 제시된 방법으로 확인)

(2) 시스템 안전성평가를 위한 안전성 목표값이 적절하게 설정된 경우 (유인항공기의 안전성 요건은 탑승자에 대한 영향을 고려하지만, 무인항공기의 경우 지상 인구밀도 및 속도와 중량을 고려한 운동에너지를 고려해야 함)

4) 호주의 무인항공기 정책 동향

호주의 경우에도 유럽과 동일하게 중량 150kg을 기준으로 소형 무인 비행장치에 대해서는 형식증명과 감항증명을 요구하지 않고 비행허가

CAR1998 Part 101 (Unmanned aircraft and rocket operations)에 규정되어 있는 무인항공기 관련 규정은 다음과 같다.

(1) 인구 밀집지역으로부터 충분한 거리를 두 운영 지역을 선택해야한다.
(2) 계속적으로 항공기를 볼 수 있는 시계가 확보될 때만이 항공기를
비행할 수 있다.
(3) 별도로 승인된 경우를 제외하고, 공항 인근 3mile 이내에서는 무인항공기를 비행할 수 없다.
(4) 인증당국의 승인된 서면 절차에 따라서만 야간비행을 할 수 있다.
(5) 비행에 직접적으로 관계된 사람을 제외하고 사람들로부터 30m 이상의 거리를 두고 비행해야 한다.
(6) 인구 밀집지역과 멀어져 있으며, 계속적인 시야가 확보될 경우에만 승인된 지역 밖의 400ft이상 고도에서 비행할 수 있다.
(7) 모형비행장치(Giant Model A/C : 25kg~150kg)를 비행할 때에는 승인된 관련단체 또는 CASA의 승인된 절차와 규정에 따라 비행해야 한다.

호주 인증당국은 2012년 2월 25일자로 무인항공기 조종사 자격인증(안)을 고시하였으며, 영어사용능력에 대한 요건 외에 다음과 같은 7분야(15항목)에 대한 평가기준을 제시하고 있다.

(1) E : Communication and Calculations
(2) F : Safety Management
(3) H : Route Planning and Navigation
(4) K : Technology
(5) W : Equipment and Systems Operations
(6) Y : Aircraft Operation and Traffic Management
(7) Z : Situation Awareness

나. 무인기 인증을 위한 우리나라의 인증기준 개발방안

1) 국제 기준 준수 및 인프라 구축과 연계
무인항공기는 지난 10여 년간 정찰, 감시, 최근에는 공격 및
수송용으로 그 활용도를 넓히면서 민간용으로의 활용 잠재성이 확인되었다. 앞에서 살펴본 바와 같이 미국 및 유럽의 주요 항공선진국들은 군용 무인항공기의 성장성 및 기술적 성숙도와 접중하는 수요를 고려할 때, 무인항공기의 일반 공역 내 운용이 임박했다고 판단하고 무인항공기를 국가공역에서의 운용할 수 있는 법적 제도 및 근거를 마련하기 시작하였다. 특히, ICAO는 무인항공기가 일반 공역에서 비행을 하기 위해서는 무인항공기 자체의 인증, 자격을 갖춘 조종사에 의한 조종, 승인된 운용자에 의한 통제를 3가지 필수 요건으로 규정하고 이를 충족하는 경우에만 공역진입을 허용하도록 정책을 전환하여 관련 규정 및 제도를 마련하고 있다.

미간 항공기에 대한 인증체계 구축 및 인증 활동은 ICAO에서 정하는 국제규약에 따른 의무 사항이며, ICAO는 향후 수년 내에 회원국들이 무인항공기에 대해서도 제한되지 않는 공역에 진입할 수 있도록 유인항공기와 동일한 수준의 인증활동을 수행할 수 있는 지침을 제정하고, 회원국에게 이를 요구할 예정이다. 우리나라도 ICAO가 제시하는 기준을 충족할 수 있도록 사전 대비해야 하며, 무인항공기에 대한 인증 수요가 대두되는 대로 적응할 수 있도록 무인항공기 인증 인프라를 적시에 구축하여야 한다. 이를 위해서는 법제도의 개정, 무인항공기 인증을 위한 절차 및 기준 수립, 무인항공기 안전성 확보를 위한 R&D 투자 확대 등이 필요하며, 종합적, 선제적, 혁신적인 전략 수립이 요구되는 상황이다.

국내 민간 무인항공기 시장수요는 원격탐사, 통신 중계, 환경감시, 기상관측, 국경감시, 산불감시, 위험지역 경찰, 재난구호 지원활동 등 다양한 분야에 걸쳐 나타나고 있으며, 향후 민간무인항공기 시장은 항공산업에서 앞으로 가장 유망한 시장의 하나로 자리매김 할 것으로 예상됨에 따라 민간 무인항공기를 안전하게 제도권 내로 통합하기
위해서는 유인항공기와는 차별화된 새로운 법령, 체계, 제도 등을 수립하고, 운용을 위한 이착륙 시설, 통신장비, 항행지원 설비 등의 인프라 구축을 병행하여야 한다.

2) 인증기준 개발 국제협력 및 무인기 데이터 촉장

현재까지는 유인항공기와 동등한 수준의 안전성이 확보되지 않아 공역 진입에 제한을 받고 있는 무인항공기의 운용을 위해서는 비행체를 비롯한 원격 조종국, 명령 및 통제 데이터 링크, 통신 시스템, 이착륙 시스템, 감지 및 회피 성능 등의 기술수준을 향상시키기 위한 노력과 함께, 감항성이 확인된 무인항공기 비행체에 대해서는 감항증명을 부여하여 원활하게 운용될 수 있도록 기존의 항공기 인증체계에 부합하는 법과 제도의 정비가 되어야 한다. 유인항공기와 마찬가지로 무인항공기의 표준감항증명을 발행하기 위해서는 형식증명이 선행되어야 하며, 이를 위해서는 형식증명의 기준이 되는 무인항공기 기술기준이 수립되어야 한다. 무인항공기 기술기준을 개발하기 위해서는 현재 전 세계적으로 연구되고 있는 무인항공기 인증 체계를 검토 및 분석하고, 기존의 유인항공기 기준과의 비교를 통해 무인항공기에 적용 가능한 기술기준을 마련하여야 한다. 무인항공기에 대한 인증기준을 수립함에 있어 결과물 중의 하나는 안전성 평가에 적용되는 정량적 요건을 설정하는 것으로서, FAA는 현재의 무인항공기 기술수준을 고려하여 유인항공기의 유형과 비교한 안전성 수준을 다음 그림과 같이 제시하고 있다. 그림에서 볼 수 있듯이 고장률이 가장 낮은 무인항공기의 경우에도 정량적인 확률 수준은 소형급(Part 23) 비행기의 Class II에 해당한다는 것을 알 수 있다.
그림 33. 무인항공기와 유인항공기의 안전성 수준 비교

안전성 기준을 비교하여 객관적인 기준 수립을 위해서는 다양한 유형의 무인항공기 및 시스템을 운용한 데이터를 바탕으로 요건이 설정되어야 하는데, 이는 단시간에 해결 가능한 사안이 아니므로 보다 장기적인 계획을 세우고 전략적으로 접근할 필요가 있다. 무인항공기에 대한 시험평가 및 시범사업을 위한 정책적인 투자가 요구되지만, 해외 기관과의 협력을 통해 정보 공유가 가능하다면 이에 대한 시간 및 비용을 절감할 수 있을 것으로 판단된다. 또한, 국내에서 개발되는 기술 및 표준을 국제적으로 통용될 수 있도록 하기 위해서도 적극적인 국제협력을 추진할 필요가 있다.

특히, 무인항공기 분야는 전 세계적으로도 정책 변화 및 기술 발전이 급격하게 이루어지고 있으므로, 국제적인 공조제계를 구축함과 동시에 우리나라도 적극적으로 체계적인 연구 및 정책 반영이 필요할 것이다. 이를 위해 2013년부터는 우리나라도 ICAO UASSG에 정식 회원국으로서 참여할 계획이며, FAA를 비롯한 해외 민간항공기의 국제협력프로그램을 수립하여 유지할 것이다. 또한, 정부 주도로 민간
무인항공기에 대한 인증 인프라를 구축함과 동시에 확보된 기술력을 바탕으로 관련 인력을 양성하고 산업체를 지원하기 위한 프로그램의 마련이 필요할 것이다.

무인항공기는 항공 산업의 축적된 경험 및 기반시설이 부족한 우리나라에서도 비교적 쉽게 진입이 가능할 것이므로, 각종 기술표준이 부재한 현 상황에서 시장 및 제반 기술을 선점하기 위한 노력이 정주되다면 향후 관련 분야를 선도할 수 있을 것이다. 이는 국토가 작아 기존 항공 산업의 발달에 많은 제약이 있었던 이스라엘이 자국의 군사적 필요에 의해 개발한 정찰용 무인기 (Pioneer)를 시발로 각종 전술 급 중소형 무인기 시장을 장악한 사례를 생각해보면 무인항공기 분야의 잠재성과 우리나라의 성공 가능성도 예상할 수 있다. 또한, 무인 항공기를 유인 항공기 공역에서 통합 운용하기 위해서는 다음과 같은 문제점들이 종합적으로 고려되어야 한다. 기존 유인항공기의 경우 지상 이동을 시작하는 시점부터 착륙시점까지 모든 운항과정에 대하여 항공교통관제를 받는다. 무인항공기도 마찬가지로 항공인전을 위하여 항공교통관제가 필요하지만, 무인항공기의 경우 무인항공기와 조종사 사이의 통신을 잃어버릴 가능성이 있으며, 조종사와의 통신신호 지연이 발생할 수도 있다. 또한 유인항공기와 무인항공기의 속도와 같은 비행 성능 차이는 관계자에 흔한을 초래할 수 있으며 성능 차이 이외에도 바람과 같은 외부 요인에 의해 수직분리 운항 조건에 따르지 못하는 문제점이 발생할 수 있다. 이러한 문제점을 해결하기 위해서는 시스템 통합, 운항지원, 모니터링과 시뮬레이션 등의 종합적인 운용 경험이 필요하므로, 국가 주도하에 무인항공기의 운용 시험을 위한 시험장 및 공역을 확보하고 시험평가 운용을 통해 관련 데이터를 확보하여야 한다.

 이를 위해서는 우리나라에서도 운용 무인기의 종류별 운용별 정보를 수집하고, 데이터를 분석하는 노력을 통해 국제 기준의 개발시
규격조화활동에 적극 참여하여야 할 것이다.

3) 우리나라 인증기준 개발방안

○ 비상회복성능(Emergency Recovery Capability)
○ 지휘/통제통신(Command and Control Link)
○ 자동화수준(Level of Autonomy)
 - Human machine interface (trading autonomy level versus possibility of UAS flight crew intervention),
 - Compliance with ATC instructions
 - Command and control link integrity
 - Handling of UAS failures and compliance with safety objectives
 - Specific autonomy techniques (non-deterministic algorithms)
 - Collision avoidance
 - Type of airspace
 - Avoidance of noise sensitive areas and objects.
○ 인적-시스템적 인터페이스(Human Machine Interface)
 - Situational awareness
 - The layout of displays versus minimization of human errors
- Colour coding and relevancy of existing manned criteria
- The nature of flight safety related parameters to be displayed
- Warning indications, including handling of emergency procedures
- Minimum number of UAS operators required for flight safety
- Level of autonomy and automation
- The consequence of a failure conditions on the UAS flight crew workload

○ 관제시스템(Control station)
○ 운영형식(Due to type of operation)
 - IFR operations for a VFR based certification (e.g. CS-VLA)
 - Rules of the Air specify that an aircraft operating over a congested area must be able to maintain a safe altitude following the failure of one power unit
 - Detect & Avoid equipment

○ 시스템 안전성평가(System Safety Assessment)
○ 충돌회피(Detect and avoid)

가) 무인항공기 기술기준 적용성

우리나라의 현행 항공법 분류 상 150kg 이상의 무인비행기 및 무인화전익비행기는 무인비행장치가 아닌 무인항공기로 분류된다. 즉 항공기로 분류되어, 유인항공기와 동등한 인증 체계를 적용받아야 하는 것이다. 하지만 아직 무인항공기의 형식증명을 위한 기술기준이 아직까지 제정되어 있지 않았으며, ICAO를 비롯한 해외 어느 국가에서도 아직까지 무인항공기에 대해서 유인항공기와 동등한 인증체계를 적용하기 위한 기술기준을 제시하고 있는 것은 없는 상황이다.

무인항공기에 대한 기술기준을 수립하는 과정에서 가장 먼저
설정되어야 하는 것은 무인항공기 분류체계인데, 이에 대해서는 ICAO UASSG를 중심으로 국제적 공동연구를 통해 2014년까지 제시될 예정이다. 하지만, 이와 같은 분류기준이 수립되기 전까지 개발되는 무인항공기에 적용하기 위해서 소형 (유인)비행기와 소형 (유인)회전익항공기에 대한 항공기 기술기준을 바탕으로 다음과 같이 무인항공기의 기술기준을 개발하여 적용할 필요가 있다.

나) 유인항공기 기술기준 대비 조항별 적용성 평가 방법

유인 소형 비행기 및 회전익항공기에 대한 기술기준인 KAS/FAR Part 23 및 Part 27을 바탕으로 무인항공기에 공동적으로 적용되는 조항, 적용되지 않는 조항, 요건 수정이 필요한 조항 및 무인항공기 특화 조항으로 구분하여 기술기준을 제정하는 방안을 제시하고자 하며, 소형 비행기 기술기준인 Part 23 대비 무인항공기 적용성을 평가한 결과를 부록에 제시하였다.

이와 같은 방안은 EASA에서도 정책문서(EASA Doc E.Y013-01)에서도 제시하고 있는 방법 중 하나로서, EASA는 무인항공기 형식증명 신청자가 해당 형식에 부합하도록 다음과 같은 분류기준을 적용하여 기술기준(안)을 먼저 제안하도록 요구하고 있다.

- F : 유인항공기 요건을 동일하게 적용할 수 있는 조항 (Fully applicable)
- I : 유인항공기 요건을 일부 수정해야 하는 조항 (Intent of specification)
- N/A : 모든 무인항공기에 적용되지 않는 유인항공기 조항 (Not Applicable)
- N/A-C : 신청자가 제안하는 무인항공기에 적용되지 않는 조항 (Not Applicable to configuration)
- P : 유인항공기 요건 중 일부만 적용되는 조항 (Partially)
- A : 대체 기준을 제안하는 조항 (Alternative)
EASA는 각 조항별로 신청자가 적용성에 대한 충분한 논리를 제공하도록 요구하고 있으며, 대체 기준을 제안하는 "A"에 대해서는 CRI(Certification Review Item)으로 등재하여 필요하다면 특수기술기준(Special Condition) 또는 동등수준의 안전기준(ELOS, Equivalent Level of Safety)으로 특별 적용하도록 규정하고 있다.

이 외에도 다음과 같이 무인항공기에만 적용되는 새로운 요건에 대해서는 특수기술기준으로 설정되어야 한다.

- Catapult Assisted and Rocket Assisted Take-off UAV
- Parachute Landing System
- Parachute Recovery System
- Command and Control Data Link
- Communication System
- Ground Control Station
- Data Displayed in the Remote Control Station
- See and Avoid
- TCAS
- ADS-B
- Transponder

다) 군용 무인항공기 기술기준 적용 및 안전성 기준 구체화 방법

EASA는 NATO FINAS 그룹에서 제정한 군용 무인항공기 기술기준인 STANAG 4671이 EASA의 기술기준 제정 정책에 가장 부합하게 작성된 기준으로 판단하고, 별도의 민간 무인항공기 기술기준이 확정되기 전까지 형식증명 신청자가 제안한다면 STANAG 4671 또는 최신 개정판을 형식증명 기준으로 적용할 수도 있도록 허용하고 있다.
하지만, 이를 적용하기 위해서는 안전성 관련 기준(1309)은 별도로 수립되어야 하며 다음과 같은 사항을 고려해야 한다.
- 해당 무인항공기의 속도 및 중량을 고려한 운동에너지 평가
- 지상 인구밀도 및 시설의 밀집도를 고려한 지상 피해 평가

항공기 시스템에 대한 안전성평가는 항공기의 개발 및 설계과정에서 수행되어야 하는 사항으로서 운용과정에서 예상되는 위험요소를 사전에 식별하여 이를 제거하거나 허용 가능한 수준으로 낮추기 위한 종합적인 관리 방법이다. 무인항공기 사고를 통계는 Pioneer, Searcher 등과 같은 초기 무인항공기에 적용되었던 single channel analog FCS, single communication, single powerplant system 등과 같은 시스템이 이중화 되고, 설계 개선이 반영되면서 사고율이 급격히 낮아지고 있으나, 아직까지는 유인항공기와 동등한 수준의 안전성 요건을 충족하기에는 어려움이 있다.

무인항공기의 종류 및 용도에 따라 위험요소와 이의 영향성 및 심각도는 상이하므로 무인항공기의 유형별로 설정된 객관적인 안전성평가 기준에 따라 안전성평가를 수행할 수 있는 절차가 마련되어야 하며, 무인항공기의 개발 및 인증과정에서 해심기술로 인식되고 있는 시스템 안전성평가 기법이 적용되어야 하지만, 아직 이에 대한 기준 및 방법이 구체화되어 있지 않기 때문에 상업용 민간 무인항공기의 개발단계에서부터 안전성을 제고시키고, 운영관리 단계에서 예상되는 사고를 예방하거나 피해를 감소시키기 위해서는 아래와 같은 분야와 과제를 중심으로 안전성평가 기준 및 절차 수립에 대한 연구가 이루어져야 한다.

- 민간 무인항공기 안전성평가 기준 연구
- 민간 무인항공기 안전성평가 절차 수립 및 지침서 개발 방안 연구
- 민간 무인항공기 안전성 제고를 위한 법제도화
拉) 기술기준(안)의 제한사항

무인항공기에 대한 기술기준 개발하기 위해서는 우선 무인항공기의 Category, Class 및 Type에 대한 기준이 설정되어야 하나, 이에 대해서는 전 세계적으로 명확한 방향이 제시되지 않고 있다. 유인항공기의 경우에는 고정익/회전익, 중량 및 탑승인원 등을 고려하여 Part 23, 25, 27, 29의 기술기준을 별도로 규정하고 있으나, 무인항공기의 경우에는 운동에너지 및 지상 피해에 대한 영향 평가를 통해서 설정되어야 한다고 EASA에서 정책적으로 제시한 내용이 유일하다.

ICAO는 이와 같은 지침을 제시하기 위해서 UASSG를 중심으로 국제적인 공동 연구를 수행하고 있다. 하지만, 이 전까지 각 회원국이 필요로 한다면 자체적으로 기술기준을 수립하여 적용하는 것에 대해서는 허용하고 있으나, 무인항공기 등록국가 이외의 국가의 영공에서 비행하고자 하는 경우에는 해당 국가의 동의가 있어야 한다는 원칙을 제시하고 있다. 이는 우리나라 자체적으로 기술기준을 수립하여 적용하더라도, ICAO 또는 국제적인 기준과 Harmonization이 이루어지지 않는다면 적용성에 제한이 있다는 의미이다.

본 연구를 통해 제안한 무인항공기 기술기준 개발방안 등을 고려하여 우리나라 자체적으로 무인항공기 기술기준을 적용하더라도 이는 제한적으로 적용해야 하며, ICAO에서 제시하는 기준 및 국제적인 Harmonization 활동을 통해 무인항공기 기술기준의 지속적인 개선이 필요하다.
부록 1. 국내 시험 인프라 분석

(1) 공기역학 분야

<table>
<thead>
<tr>
<th>구분</th>
<th>시험장비명</th>
<th>기관</th>
<th>용도</th>
<th>Spec.</th>
</tr>
</thead>
<tbody>
<tr>
<td>연*</td>
<td>아음속 풍동</td>
<td>ADD</td>
<td>공력시험 (유속110m/s)</td>
<td>Test section cross size: 0.3m×0.3m Anechoic room: 6.0m×5.0m×4.0m Range: 0~62.8m/s</td>
</tr>
<tr>
<td>연*</td>
<td>초음속 풍동</td>
<td>ADD</td>
<td>항공기 공력시험</td>
<td></td>
</tr>
<tr>
<td>학</td>
<td>무반향 풍동 (Anechoic Wind Tunnel)</td>
<td>KAIST</td>
<td>항공기 공력시험</td>
<td></td>
</tr>
<tr>
<td>학</td>
<td>아음속 풍동 (Subsonic Wind Tunnel)</td>
<td>KAIST</td>
<td>아음속 공력시험</td>
<td>1m×0.7m range: 10~70m/s</td>
</tr>
<tr>
<td>학</td>
<td>소형 풍동</td>
<td>KAIST</td>
<td>MAV 공력시험</td>
<td>0.3m×0.3m×1m range: 1~30m/s</td>
</tr>
<tr>
<td>학</td>
<td>음향풍동 저난류 개회로 풍동</td>
<td>KAIST</td>
<td>항공기 공력시험</td>
<td></td>
</tr>
<tr>
<td>학</td>
<td>Shock Tube</td>
<td>KAIST</td>
<td>초음속호름 및 충격파 실험</td>
<td>Inside Diameter: 190mm Whole length: 220mm</td>
</tr>
<tr>
<td>연*</td>
<td>아음속 풍동</td>
<td>KARI</td>
<td>공력시험 (유속110m/s)</td>
<td>폐쇄형 4m×3m</td>
</tr>
<tr>
<td>연*</td>
<td>아음속 풍동</td>
<td>KARI</td>
<td>공력시험 (유속110m/s)</td>
<td>개방형 5m×3.7m</td>
</tr>
<tr>
<td>학</td>
<td>다목적 아음속 풍동</td>
<td>건국대</td>
<td>항공기 공력시험</td>
<td>1m×1m×3.5m 2.2m×2m×9m range: 045.1m/s 09.8m/s</td>
</tr>
<tr>
<td>학</td>
<td>Shock Tunnel</td>
<td>건국대</td>
<td>초음속 유동 및 충격파 실험</td>
<td></td>
</tr>
<tr>
<td>학</td>
<td>아음속 풍동 (Subsonic Wind Tunnel)</td>
<td>경상대</td>
<td>항공기 공력시험</td>
<td>1m×1m×3m</td>
</tr>
<tr>
<td>구분</td>
<td>시험장비명</td>
<td>기관</td>
<td>용도</td>
<td>Spec.</td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
<td>------</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>학</td>
<td>중형 풍동</td>
<td>공사</td>
<td>항공기 공력시험</td>
<td>2.45m×3.5m×8.7m 3.67m×5.25m×8m range: 0~92m/s</td>
</tr>
<tr>
<td>학</td>
<td>대기 경계층 풍동</td>
<td>부산대</td>
<td>항공기 공력시험</td>
<td></td>
</tr>
<tr>
<td>학</td>
<td>아음속 페쇄 회로 풍동 (Subsonic Circuit Type Wind Tunnel)</td>
<td>부산대</td>
<td>항공기 공력시험</td>
<td></td>
</tr>
<tr>
<td>학</td>
<td>아음속 풍동 (Subsonic Wind Tunnel)</td>
<td>서울대</td>
<td>항공기 공력시험</td>
<td>0.96m×1.35m×2m range: 0~75m/s</td>
</tr>
<tr>
<td>학</td>
<td>초음속 풍동</td>
<td>서울대</td>
<td>항공기 공력시험</td>
<td>0.2m×0.2m range: M=2,3,3.8</td>
</tr>
<tr>
<td>학</td>
<td>Gottingen type 풍동</td>
<td>서울대</td>
<td>항공기 공력시험</td>
<td></td>
</tr>
<tr>
<td>학</td>
<td>소형 아음속 풍동</td>
<td>세종대</td>
<td>항공기 공력시험</td>
<td></td>
</tr>
<tr>
<td>학</td>
<td>소형 아음속 풍동</td>
<td>영남대</td>
<td>항공기 공력시험</td>
<td>(1.2m×0.9m×3.6m) wind speed: 0.5~40m/s</td>
</tr>
<tr>
<td>학</td>
<td>풍동 2</td>
<td>영남대</td>
<td>항공기 공력시험</td>
<td></td>
</tr>
<tr>
<td>학</td>
<td>풍동</td>
<td>울산대</td>
<td>항공기 공력시험</td>
<td>(2m×1.8m×10m) wind speed: 5m/s~30m/s</td>
</tr>
<tr>
<td>학</td>
<td>아음속 풍동</td>
<td>인하대</td>
<td>항공기 공력시험</td>
<td>Closed Type, Octagonal section (1m×1m×2m) Wind speed: 0~70m/s</td>
</tr>
<tr>
<td>학</td>
<td>건축과 경계층 풍동</td>
<td>전북대</td>
<td>항공기 공력시험</td>
<td>(23m×4m×1.5)</td>
</tr>
<tr>
<td>학</td>
<td>아음속 풍동</td>
<td>전북대</td>
<td>항공기 공력시험</td>
<td>수직순환폐쇄회로방식 (12m×2.5m×40m) (5m×2.5m×20m) wind speed: 0.3m/s12m/s 0.3m/s31m/s</td>
</tr>
<tr>
<td>학</td>
<td>아음속 풍동 (Subsonic Wind Tunnel)</td>
<td>조선대</td>
<td>아음속 공력시험</td>
<td></td>
</tr>
<tr>
<td>구분</td>
<td>시험장비명</td>
<td>기관</td>
<td>용도</td>
<td>Spec.</td>
</tr>
<tr>
<td>------</td>
<td>-------------------</td>
<td>--------</td>
<td>---------------</td>
<td>--</td>
</tr>
<tr>
<td>학</td>
<td>초음속풍동 (Supersonic Wind Tunnel)</td>
<td>조선대</td>
<td>초음속공력시험</td>
<td>(40mm×40mm) M=1.5~3.0</td>
</tr>
<tr>
<td>학</td>
<td>중형공력음향풍동</td>
<td>충남대</td>
<td>항공기공력시험</td>
<td>(8ft×6ft)</td>
</tr>
<tr>
<td>학</td>
<td>Open-Jet 풍동</td>
<td>충남대</td>
<td>항공기공력시험</td>
<td>(0.24m×0.24m×1m) Range:0~32.5m/s</td>
</tr>
<tr>
<td>학</td>
<td>저난류경계층풍동</td>
<td>포항공대</td>
<td>항공기공력시험</td>
<td>1.8mx1.5mx4.3m wind speed: 5~70m/s</td>
</tr>
<tr>
<td>학</td>
<td>중형아음속풍동</td>
<td>포항공대</td>
<td>항공기공력시험</td>
<td></td>
</tr>
<tr>
<td>학</td>
<td>소형아음속풍동</td>
<td>한양대</td>
<td>항공기공력시험</td>
<td>0.8x0.8x1.2 wind speed: 0~70m/s</td>
</tr>
<tr>
<td>학</td>
<td>소형아음속풍동</td>
<td>한양대</td>
<td>항공기공력시험</td>
<td>0.3mx0.3mx0.6m</td>
</tr>
<tr>
<td>산</td>
<td>대형경계층풍동</td>
<td>현대건설</td>
<td>항공기공력시험</td>
<td></td>
</tr>
<tr>
<td>산</td>
<td>대형경계층풍동</td>
<td>현대자동차</td>
<td>항공기공력시험</td>
<td></td>
</tr>
<tr>
<td>산</td>
<td>HMWT</td>
<td>현대자동차</td>
<td>항공기공력시험</td>
<td></td>
</tr>
<tr>
<td>산</td>
<td>HAWT</td>
<td>현대자동차</td>
<td>항공기공력시험</td>
<td></td>
</tr>
</tbody>
</table>

(2) 구조 분야

<table>
<thead>
<tr>
<th>구분</th>
<th>시험장비명</th>
<th>기관</th>
<th>용도</th>
<th>Spec.</th>
</tr>
</thead>
<tbody>
<tr>
<td>연*</td>
<td>내구성시험장비 (AERO-90)</td>
<td>ADD</td>
<td>정적/내구성시험 및 하중제어 (120채널)</td>
<td></td>
</tr>
<tr>
<td>연*</td>
<td>동특성가전기</td>
<td>ADD</td>
<td>동특성시험 시 대상물가전</td>
<td></td>
</tr>
<tr>
<td>구분</td>
<td>시험장비명</td>
<td>기관</td>
<td>용도</td>
<td>Spec.</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>-------</td>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>연*</td>
<td>정석구조시험장비 (AERO-90LT)</td>
<td>ADD</td>
<td>정석구조/파로시험화중 영어장비 (16채널)</td>
<td></td>
</tr>
<tr>
<td>연*</td>
<td>제1구조시험동</td>
<td>ADD</td>
<td>소형구조물 정석/파로시험</td>
<td></td>
</tr>
<tr>
<td>연*</td>
<td>제2구조시험동</td>
<td>ADD</td>
<td>대형구조물 정석/파로시험</td>
<td></td>
</tr>
<tr>
<td>연*</td>
<td>트랜드 모니터링 장비</td>
<td>ADD</td>
<td>구조시험중 센서자료 실시간 제공</td>
<td></td>
</tr>
<tr>
<td>연*</td>
<td>유향 Actuator</td>
<td>ADD</td>
<td>구조시험시 하중부가용</td>
<td></td>
</tr>
<tr>
<td>산*</td>
<td>고속인장시험기</td>
<td>ADD</td>
<td>재료 물성치 고속측정평가</td>
<td></td>
</tr>
<tr>
<td>산*</td>
<td>구조시험자료 획득 장치</td>
<td>KAI</td>
<td>T-50 구조시험자료 획득용</td>
<td></td>
</tr>
<tr>
<td>산*</td>
<td>GT DAS</td>
<td>KAI</td>
<td>T-50 지상시험자료 획득용</td>
<td></td>
</tr>
<tr>
<td>산*</td>
<td>Load Control System</td>
<td>KAI</td>
<td>T-50 구조시험 하중제어장치</td>
<td></td>
</tr>
<tr>
<td>산*</td>
<td>Strain Gage Tester</td>
<td>KAI</td>
<td>T-50 Strain Gage 시험용</td>
<td></td>
</tr>
<tr>
<td>산*</td>
<td>Vibration Test System</td>
<td>KAI</td>
<td>T-50 지상진동시험</td>
<td></td>
</tr>
<tr>
<td>산*</td>
<td>고속인장시험기</td>
<td>KAI</td>
<td>재료 물성치 고속측정평가</td>
<td></td>
</tr>
<tr>
<td>산*</td>
<td>만능재료시험기 (Material Testing System)</td>
<td>KARI</td>
<td>부품 및 시료의 재료시험</td>
<td></td>
</tr>
<tr>
<td>산*</td>
<td>진동시험기</td>
<td>KARI</td>
<td>부품 등 진동시험 (2500Hz)</td>
<td></td>
</tr>
<tr>
<td>산*</td>
<td>주사전자현미경 (Scanning Electron Microscopy)</td>
<td>KARI</td>
<td>시료의 표면 및 상태측정/평가</td>
<td></td>
</tr>
<tr>
<td>산*</td>
<td>고속인장시험기</td>
<td>KARI</td>
<td>재료 물성치 고속측정평가</td>
<td></td>
</tr>
<tr>
<td>구분</td>
<td>시험장비명</td>
<td>기관</td>
<td>용도</td>
<td>Spec.</td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
<td>------</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>연*</td>
<td>미세경도시험기 (Micro Vickers Hardness Tester)</td>
<td>KARI</td>
<td>미세 경도 시험</td>
<td></td>
</tr>
<tr>
<td>연*</td>
<td>미소진동 감쇄기 (Isolation Test System for Micro-Vibration)</td>
<td>KARI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>연*</td>
<td>전기체 구조시험동</td>
<td>KARI</td>
<td>전기체 구조시험 (22m×35m)</td>
<td></td>
</tr>
<tr>
<td>연*</td>
<td>전기체 지상진동시험장비</td>
<td>KARI</td>
<td>전기체 지상진동시험</td>
<td></td>
</tr>
<tr>
<td>연*</td>
<td>진동계측장비 (Vibration Measurement System)</td>
<td>KARI</td>
<td>진동계측</td>
<td></td>
</tr>
<tr>
<td>연*</td>
<td>진동환경시험장비</td>
<td>KARI</td>
<td>탑재장비 진동환경시험 (3~80Hz)</td>
<td></td>
</tr>
<tr>
<td>연*</td>
<td>환경시험용 진동시험 콘트롤러 (Portable Dynamic Signal Analyzer & Vibration Control System)</td>
<td>KARI</td>
<td>진동 시험 콘트롤</td>
<td></td>
</tr>
<tr>
<td>연*</td>
<td>UTM(150톤)</td>
<td>KARI</td>
<td>구조정력/피로강도시험</td>
<td></td>
</tr>
<tr>
<td>산</td>
<td>V860–HD–C</td>
<td>LG 이노텍</td>
<td>진동시험 (주파수 2~2000Hz)</td>
<td></td>
</tr>
<tr>
<td>학*</td>
<td>동적 변형률 측정장치</td>
<td>경상대</td>
<td>재료의 동적/정적 크리프 특성조사</td>
<td></td>
</tr>
<tr>
<td>학*</td>
<td>만능 재료 시험기</td>
<td>경상대</td>
<td>재료에 대한 안정강도, 압축강도, 휘강도, 파탄점, 항복점 등을 측정</td>
<td></td>
</tr>
<tr>
<td>학</td>
<td>주사전자현미경 (Scanning Electron Microscopy)</td>
<td>경상대</td>
<td>시료의 표면 및 상태 측정/평가</td>
<td></td>
</tr>
<tr>
<td>학</td>
<td>진동내구성시험장치</td>
<td>경상대</td>
<td>부품진동 내구성측정</td>
<td></td>
</tr>
<tr>
<td>학</td>
<td>진동내구성시험장치 (FMC120–M)</td>
<td>경상대</td>
<td>부품 부식 환경 측정/평가</td>
<td></td>
</tr>
<tr>
<td>구분</td>
<td>시험장비명</td>
<td>기관</td>
<td>용도</td>
<td>Spec.</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>------------</td>
<td>---</td>
<td>-------</td>
</tr>
<tr>
<td>학*</td>
<td>무관전차현미경</td>
<td>경상대</td>
<td>미세구조관찰</td>
<td></td>
</tr>
<tr>
<td>학</td>
<td>광로시험기(10톤) INSTRON 8516</td>
<td>경상대</td>
<td>구조물의 내구성 및 광로시험</td>
<td></td>
</tr>
<tr>
<td>학</td>
<td>광로시험기(25톤) INSTRON 8516</td>
<td>경상대</td>
<td>구조물의 내구성 및 광로시험</td>
<td></td>
</tr>
<tr>
<td>학</td>
<td>광로시험기(50톤) INSTRON 8516</td>
<td>경상대</td>
<td>구조물의 내구성 및 광로시험</td>
<td></td>
</tr>
<tr>
<td>학*</td>
<td>초음파 탐상기</td>
<td>경상대</td>
<td>초음파를 이용하여 각종 결함 내재 여부 조사</td>
<td></td>
</tr>
<tr>
<td>학</td>
<td>항공기 부품해석용 고성능 시비 (High Performance Server for Aircraft Part Analysis)</td>
<td>경상대</td>
<td>항공기 부품 해석</td>
<td></td>
</tr>
<tr>
<td>학</td>
<td>항공기 구조시험 시스템 (Aircraft Structure Test System)</td>
<td>경상대</td>
<td>항공기 구조시험</td>
<td></td>
</tr>
<tr>
<td>산</td>
<td>진동시험기</td>
<td>경주 전장</td>
<td>부품 및 진동시험 (2500Hz)</td>
<td></td>
</tr>
<tr>
<td>학</td>
<td>전계 방사형 주사 전자현미경/에너지 분산형 X선분광기 (Field Emission Scanning Electron Microscope/Energy Dispersive Spectroscopy)</td>
<td>고려대</td>
<td>시료의 표면 및 상태 측정/평가</td>
<td></td>
</tr>
<tr>
<td>학</td>
<td>주사전자현미경 (Scanning Electron Microscopy)</td>
<td>고려대</td>
<td>시료의 표면 및 상태 측정/평가</td>
<td></td>
</tr>
<tr>
<td>학</td>
<td>무관전차현미경 (Transmission Electron Microscope)</td>
<td>고려대</td>
<td>부품 및 시료의 내부 구조 관찰</td>
<td></td>
</tr>
<tr>
<td>연*</td>
<td>AES/SEM</td>
<td>과학기술 연구원</td>
<td>재료표면 분석장비 (원소분석 등)</td>
<td></td>
</tr>
<tr>
<td>구분</td>
<td>시험장비명</td>
<td>기관</td>
<td>용도</td>
<td>Spec.</td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
</tr>
<tr>
<td>연*</td>
<td>TOF-SIMS</td>
<td>과학기술연구원</td>
<td>재료표면 분석장비
(분사구조분석 등)</td>
<td></td>
</tr>
<tr>
<td>연*</td>
<td>XPS (X-ray Photoelectron Spectroscopy)</td>
<td>과학기술연구원</td>
<td>재료표면 분석
(원소 방분석 등)</td>
<td></td>
</tr>
<tr>
<td>학</td>
<td>주사전자현미경(Scanning Electron Microscopy)</td>
<td>국민대</td>
<td>시료의 표면 및 상태측정/평가</td>
<td></td>
</tr>
<tr>
<td>학</td>
<td>두파전자현미경(Transmission Electron Microscope)</td>
<td>국민대</td>
<td>시료의 부품 및 내부의 구조 분석</td>
<td></td>
</tr>
<tr>
<td>산*</td>
<td>Ultrasonic Bonding Tester</td>
<td>다현프릭션</td>
<td>접합부분 및 접합강도 평가</td>
<td></td>
</tr>
<tr>
<td>산</td>
<td>하우징 퍼로시험기</td>
<td>다이모스</td>
<td>하우징의 퍼로 시험</td>
<td></td>
</tr>
<tr>
<td>산*</td>
<td>만능재료시험기(Material Testing System)</td>
<td>대한항공</td>
<td>부품 및 시료의 재료시험</td>
<td></td>
</tr>
<tr>
<td>학</td>
<td>만능재료시험기(Universal Testing Machine)</td>
<td>부산대</td>
<td>부품 및 시료의 재료시험</td>
<td></td>
</tr>
<tr>
<td>연*</td>
<td>퍼로시험기8501(10톤)</td>
<td>산업기술시험원</td>
<td>퍼로시험 및 수명평가, 내구성시험</td>
<td></td>
</tr>
<tr>
<td>산</td>
<td>운송시험기</td>
<td>삼성탈레스</td>
<td>사인, 랜덤진동시험 및 충격시험</td>
<td></td>
</tr>
<tr>
<td>산</td>
<td>진동충격시험기(2XSA120-T4000)</td>
<td>삼성탈레스</td>
<td>부품진동/충격시험</td>
<td></td>
</tr>
<tr>
<td>산</td>
<td>압축강도시험기(Compressive Strength Testing Machine)</td>
<td>삼성탈레스</td>
<td>압축강도 시험</td>
<td></td>
</tr>
<tr>
<td>산*</td>
<td>인장강도시험기(Universal Testing Machine)</td>
<td>삼성탈레스</td>
<td>인장강도 시험</td>
<td></td>
</tr>
<tr>
<td>구분</td>
<td>시험장비명</td>
<td>기관</td>
<td>용도</td>
<td>Spec.</td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
<td>-----</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>학</td>
<td>고분해능 투과 전자현미경 (High Resolution Transmission Electron Microscope)</td>
<td>서울대</td>
<td>고분해 성분 분석</td>
<td></td>
</tr>
<tr>
<td>학</td>
<td>전계방사형 주사 전자현미경 (Field Emission Scanning Electron Microscope)</td>
<td>서울대</td>
<td>시료의 표면 및 상태 측정/평가</td>
<td></td>
</tr>
<tr>
<td>학</td>
<td>주사 전자현미경 (Scanning Electron Microscopy)</td>
<td>서울대</td>
<td>시료의 표면 및 상태 측정/평가</td>
<td></td>
</tr>
<tr>
<td>학</td>
<td>두과 전자현미경 (Transmission Electron Microscope)</td>
<td>서울대</td>
<td>부품 및 시료의 내부 구조 관찰</td>
<td></td>
</tr>
<tr>
<td>산</td>
<td>쌍절경도시험기 (Rockwell Hardness Tester)</td>
<td>수성 기체</td>
<td>경도시험</td>
<td></td>
</tr>
<tr>
<td>산</td>
<td>진동시험기</td>
<td>엘텍</td>
<td>부품 등 진동시험 (2500Hz)</td>
<td></td>
</tr>
<tr>
<td>산</td>
<td>진동시험기</td>
<td>요업 기술원</td>
<td>부품 등 진동시험 (2500Hz)</td>
<td></td>
</tr>
<tr>
<td>학</td>
<td>구조피로 시험장치</td>
<td>울산대</td>
<td>항공기 구조피로시험</td>
<td></td>
</tr>
<tr>
<td>학</td>
<td>만능제료 시험기 (Universal Testing Machine)</td>
<td>울산대</td>
<td>재료 시험</td>
<td></td>
</tr>
<tr>
<td>학</td>
<td>회전굴림 피로시험장치</td>
<td>울산대</td>
<td>재료 피로 내구성 시험</td>
<td></td>
</tr>
<tr>
<td>산*</td>
<td>인장강도 시험기 (Universal Tensile Testing Machine)</td>
<td>위아중공업</td>
<td>인장강도 시험</td>
<td></td>
</tr>
<tr>
<td>산</td>
<td>쌍절경도시험기 (Rockwell Hardness Tester)</td>
<td>위아중공업</td>
<td>경도시험</td>
<td></td>
</tr>
<tr>
<td>산</td>
<td>금속 현미경 (Metal Microscope)</td>
<td>위아중공업</td>
<td>재료 관찰</td>
<td></td>
</tr>
<tr>
<td>구분</td>
<td>시험장비명</td>
<td>기관</td>
<td>용도</td>
<td>Spec.</td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>산</td>
<td>마이크로 아카시 경도시험기 (Micro Vickers Hardness Tester)</td>
<td>위아중공업</td>
<td>경도시험</td>
<td></td>
</tr>
<tr>
<td>산</td>
<td>주사 전자현미경 (Scanning Electron Microscopy)</td>
<td>위아중공업</td>
<td>시료의 표면 및 상태 측정/평가</td>
<td></td>
</tr>
<tr>
<td>학</td>
<td>전계 방사형 주사 전자현미경 (Field Emission Scanning Electron Microscope)</td>
<td>인하대</td>
<td>시료의 표면 및 상태 측정/평가</td>
<td></td>
</tr>
<tr>
<td>학</td>
<td>전계 방사형 주사 전자현미경 (Field Emission Scanning Electron Microscope)</td>
<td>인하대</td>
<td>시료의 표면 및 상태 측정/평가</td>
<td></td>
</tr>
<tr>
<td>학</td>
<td>투과 전자현미경 (Transmission Electron Microscope)</td>
<td>인하대</td>
<td>부품 및 시료의 내부 구조 분석</td>
<td></td>
</tr>
<tr>
<td>연</td>
<td>6축 가전기</td>
<td>자동차부품연구원</td>
<td>자동차 부품 진동 내구시험</td>
<td></td>
</tr>
<tr>
<td>연</td>
<td>복합환경 진동기</td>
<td>자동차부품연구원</td>
<td>자동차 부품 진동 내구 및 수명시험</td>
<td></td>
</tr>
<tr>
<td>연</td>
<td>진동시험장치</td>
<td>자동차부품연구원</td>
<td>진동폭 가변 가능한 진동 및 피로시험</td>
<td></td>
</tr>
<tr>
<td>산*</td>
<td>만능재료시험기 (Material Testing System)</td>
<td>전력연구원</td>
<td>부품 및 시료의 재료시험</td>
<td></td>
</tr>
<tr>
<td>연</td>
<td>비틀림 진동 분석장치 (Torsional Vibration Measurement System)</td>
<td>전력연구원</td>
<td>비틀림 진동 분석</td>
<td></td>
</tr>
<tr>
<td>연</td>
<td>진동 음향 분석기 (Dynamic Signal Analyzer)</td>
<td>전력연구원</td>
<td>진동 음향 분석</td>
<td></td>
</tr>
<tr>
<td>학</td>
<td>만능 재료시험기 (Universal Testing Machine)</td>
<td>전북대</td>
<td>재료시험</td>
<td></td>
</tr>
<tr>
<td>구분</td>
<td>시험장비명</td>
<td>기관</td>
<td>용도</td>
<td>Spec.</td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>학</td>
<td>주사 전자 현미경 (Scanning Electron Microscopy)</td>
<td>전북대</td>
<td>시료의 표면 및 상태 측정/평가</td>
<td></td>
</tr>
<tr>
<td>학</td>
<td>투과 전자 현미경 (Transmission Electron Microscope)</td>
<td>전북대</td>
<td>부품 및 시료의 내부 구조 관찰</td>
<td></td>
</tr>
<tr>
<td>학</td>
<td>만능 재료 시험기 (Universal Testing Machine)</td>
<td>조선대</td>
<td>재료 시험</td>
<td></td>
</tr>
<tr>
<td>학</td>
<td>주사 전자 현미경 (Scanning Electron Microscopy)</td>
<td>조선대</td>
<td>시료의 표면 및 상태 측정/평가</td>
<td></td>
</tr>
<tr>
<td>학</td>
<td>투과 전자 현미경 (Transmission Electron Microscope)</td>
<td>조선대</td>
<td>부품 및 시료의 내부 구조 관찰</td>
<td></td>
</tr>
<tr>
<td>학</td>
<td>만능 재료 시험기 (Universal Testing Machine)</td>
<td>진주 산업대</td>
<td>재료 시험</td>
<td></td>
</tr>
<tr>
<td>학</td>
<td>만능 재료 시험기 (Material System)</td>
<td>충남대</td>
<td>재료 시험</td>
<td></td>
</tr>
<tr>
<td>학</td>
<td>주사 전자 현미경 (Scanning Electron Microscope) -HITACHI(공대) (Scanning Electron Microscope (SEM)&EDX)</td>
<td>충남대</td>
<td>시료의 표면 및 상태 측정/평가</td>
<td></td>
</tr>
<tr>
<td>학</td>
<td>투과전자현미경 (Transmission Electron Microscope)</td>
<td>충남대</td>
<td>부품 및 시료의 내부 구조 관찰</td>
<td></td>
</tr>
<tr>
<td>산*</td>
<td>만능 재료 시험기 (Material System)</td>
<td>테크</td>
<td>부품 및 시료의 재료 시험</td>
<td></td>
</tr>
<tr>
<td>산</td>
<td>초음파 측정기 (C-Scan) (Ultrasonic Scanner)</td>
<td>테크</td>
<td>부품 및 시료시험</td>
<td></td>
</tr>
<tr>
<td>산</td>
<td>주사 전자 현미경 (Scanning Electron Microscope)</td>
<td>퍼스텍</td>
<td>시료의 표면 및 상태 측정/평가</td>
<td></td>
</tr>
<tr>
<td>구분</td>
<td>시험장비명</td>
<td>기관</td>
<td>용도</td>
<td>Spec.</td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
<td>------</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>학</td>
<td>인장시험기 (Universal Testing System)</td>
<td>포항공대</td>
<td>부품 및 시료의 인장시험</td>
<td></td>
</tr>
<tr>
<td>학</td>
<td>전계방사형 주사 전자 현미경 (Field Emission Scanning Electron Microscope)</td>
<td>포항공대</td>
<td>시료의 표면 및 상태측정/평가</td>
<td></td>
</tr>
<tr>
<td>학</td>
<td>두과 전자 현미경 (Transmission Electron Microscope)</td>
<td>포항공대</td>
<td>부품 및 시료의 내부구조 관찰</td>
<td></td>
</tr>
<tr>
<td>산*</td>
<td>만능 재료시험기 (Material Testing System)</td>
<td>포항산업과학연구원</td>
<td>부품 및 시료의 재료시험</td>
<td></td>
</tr>
<tr>
<td>산</td>
<td>전동시험기</td>
<td>한국광기술원</td>
<td>부품 등 전동시험 (2500Hz)</td>
<td></td>
</tr>
<tr>
<td>산*</td>
<td>만능 재료시험기 (Material Testing System)</td>
<td>한국기계연구원</td>
<td>부품 및 시료의 재료시험</td>
<td></td>
</tr>
<tr>
<td>연*</td>
<td>유압 Actuator</td>
<td>한국기계연구원</td>
<td>구조시험시 하중부가용</td>
<td></td>
</tr>
<tr>
<td>연*</td>
<td>2축 피로시험기</td>
<td>한국기계연구원</td>
<td>방진마운트 신뢰성, 성능/수명시험</td>
<td></td>
</tr>
<tr>
<td>연*</td>
<td>3차원 내진시험기</td>
<td>한국기계연구원</td>
<td>3차원 지진시험/원전기기성능시험</td>
<td></td>
</tr>
<tr>
<td>연*</td>
<td>다목적 구조시험설비</td>
<td>한국기계연구원</td>
<td>정적/피로시험 (25x12x8m)</td>
<td></td>
</tr>
<tr>
<td>연*</td>
<td>대형 6차유도 진동대</td>
<td>한국기계연구원</td>
<td>진동 및 지진시험 (0~80Hz)</td>
<td></td>
</tr>
<tr>
<td>연*</td>
<td>자료획득 시스템 A/C Data Acquisition System</td>
<td>한국기계연구원</td>
<td>KT-1구조시험</td>
<td></td>
</tr>
<tr>
<td>구분</td>
<td>시험장비명</td>
<td>기관</td>
<td>용도</td>
<td>Spec.</td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
<td>------</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>연*</td>
<td>진동, 소음 분석장비</td>
<td>한국 기계 연구원</td>
<td>내외장 부품 작동 소음시험</td>
<td></td>
</tr>
<tr>
<td>연*</td>
<td>투과 전자현미경 (Transmission Electron Microscope)</td>
<td>한국 기계 연구원</td>
<td>부품 및 시료의 내부 구조 관찰</td>
<td></td>
</tr>
<tr>
<td>연*</td>
<td>Mechanical Shock</td>
<td>한국 기계 연구원</td>
<td>트랜스미션 등 부품 충격시험</td>
<td></td>
</tr>
<tr>
<td>산*</td>
<td>만능 재료 시험기 (Material Testing System)</td>
<td>한국 화이바</td>
<td>부품 및 시료의 재료시험</td>
<td></td>
</tr>
<tr>
<td>산</td>
<td>주사 전자현미경 (Scanning Electron Microscopy)</td>
<td>한국 화이바</td>
<td>시료의 표면 및 상태 측정/평가</td>
<td></td>
</tr>
<tr>
<td>산*</td>
<td>조류 충돌 시험장치 (Bird Collision Test Rig)</td>
<td>한국화이바</td>
<td>조류 사출 발사 충돌시험장치</td>
<td></td>
</tr>
<tr>
<td>학</td>
<td>광탄성 응력 측정장치 (Photo Elastic Stress Measuring)</td>
<td>항공대</td>
<td>부품 및 시료의 응력 분포 상태 측정</td>
<td></td>
</tr>
<tr>
<td>학</td>
<td>금속 현미경 (Microscope)</td>
<td>항공대</td>
<td>부품 및 시료의 내부 구조 관찰</td>
<td></td>
</tr>
<tr>
<td>학</td>
<td>동적변 형차시스템 (Dynamic Strain Measurement System)</td>
<td>항공대</td>
<td>동적 변형 측정</td>
<td></td>
</tr>
<tr>
<td>학</td>
<td>마그노 플럭스 탐상장치 (Magno Flux Inspection Kit)</td>
<td>항공대</td>
<td>검사 도구</td>
<td></td>
</tr>
<tr>
<td>학</td>
<td>만능 재료 시험기 (Universal Testing Machine)</td>
<td>항공대</td>
<td>재료 시험</td>
<td></td>
</tr>
<tr>
<td>학</td>
<td>스트레인 회로시험장치 (Strain Gauge Measuring Set)</td>
<td>항공대</td>
<td>스트레인 회로 시험</td>
<td></td>
</tr>
<tr>
<td>학</td>
<td>응력 시험기 (Stress Tester)</td>
<td>항공대</td>
<td>응력 시험</td>
<td></td>
</tr>
<tr>
<td>구분</td>
<td>시험장비명</td>
<td>기관</td>
<td>용도</td>
<td>Spec.</td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
<td>----------------</td>
<td>--------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>학</td>
<td>인장시험기 (Tensile Tester)</td>
<td>항공대</td>
<td>인장시험</td>
<td></td>
</tr>
<tr>
<td>학</td>
<td>정적변형지시기 (Static Strain Indicator)</td>
<td>항공대</td>
<td>정적 변형검사</td>
<td></td>
</tr>
<tr>
<td>학</td>
<td>조사전사현미경 (Scanning Electron Microscopy)</td>
<td>항공대</td>
<td>시료의 표면 및 상태 측정/평가</td>
<td></td>
</tr>
<tr>
<td>학</td>
<td>진동시험기 (Vibration Tester)</td>
<td>항공대</td>
<td>진동시험</td>
<td></td>
</tr>
<tr>
<td>학</td>
<td>진동시험기 (Vibration Tester)</td>
<td>항공대</td>
<td>진동시험</td>
<td></td>
</tr>
<tr>
<td>학</td>
<td>초음파측정기(A-Scan) (Ultrasonic Scanner)</td>
<td>항공대</td>
<td>부품 및 시료시험</td>
<td></td>
</tr>
<tr>
<td>학</td>
<td>초음파탐상기 (Reflecto Scope)</td>
<td>항공대</td>
<td>부품 및 시료시험</td>
<td></td>
</tr>
<tr>
<td>학</td>
<td>충격시험기 (Impact Tester)</td>
<td>항공대</td>
<td>충격시험</td>
<td></td>
</tr>
<tr>
<td>학</td>
<td>충격시험기 (Impact Tester)</td>
<td>항공대</td>
<td>충격시험</td>
<td></td>
</tr>
</tbody>
</table>

(3) 엔진 분야

<table>
<thead>
<tr>
<th>구분</th>
<th>시험장비명</th>
<th>기관</th>
<th>용도</th>
<th>Spec.</th>
</tr>
</thead>
<tbody>
<tr>
<td>산*</td>
<td>PDIU</td>
<td>KAI</td>
<td>엔진 ELU 제안기능</td>
<td></td>
</tr>
<tr>
<td>학</td>
<td>추진/연소시험설비</td>
<td>KAIST</td>
<td>Gas Turbine 등 시험</td>
<td></td>
</tr>
<tr>
<td>산*</td>
<td>압축기성능시험설비</td>
<td>KARI</td>
<td>리그/성능시험</td>
<td></td>
</tr>
<tr>
<td>연*</td>
<td>30톤급 로켓엔진 연소기 추력측정장치 (Thrust Test Stand)</td>
<td>KARI</td>
<td>연소기 추력측정</td>
<td></td>
</tr>
<tr>
<td>구분</td>
<td>시험장비명</td>
<td>기관</td>
<td>용도</td>
<td>Spec.</td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
</tr>
<tr>
<td>연*</td>
<td>고공환경시험</td>
<td>KARI</td>
<td>고공 환경 시험</td>
<td></td>
</tr>
<tr>
<td>연*</td>
<td>동력흡수장치 (Power System)</td>
<td>KARI</td>
<td>동력 흡수</td>
<td></td>
</tr>
<tr>
<td>연*</td>
<td>엔진시험 측정 및 제어용 데이터획득장치 (Data Acquisition Device for Engine Test Measurement and Engine Control)</td>
<td>KARI</td>
<td>엔진 시험 측정 및 제어용 데이터 획득 장치</td>
<td></td>
</tr>
<tr>
<td>연*</td>
<td>추력측정 디바이스 (Thrust Measuring Device)</td>
<td>KARI</td>
<td>추력 측정 장치</td>
<td></td>
</tr>
<tr>
<td>연*</td>
<td>RETF 강도기밀시스템 ("Rocket Engine Test Facility Strength, Leakage Test System")</td>
<td>KARI</td>
<td>RETF 강도기밀시스템</td>
<td></td>
</tr>
<tr>
<td>연*</td>
<td>RETF 케로신 시스템 (Rocket Engine Test Facility - Kerosene System)</td>
<td>KARI</td>
<td>RETF 케로신시스템</td>
<td></td>
</tr>
<tr>
<td>연*</td>
<td>연소기 성능시험설비</td>
<td>KARI</td>
<td>가스터빈엔진 연소기 성능시험</td>
<td></td>
</tr>
<tr>
<td>학</td>
<td>축류터빈 성능시험장치 (Axial Turbine Performance Testing)</td>
<td>강상태</td>
<td>축류 터빈 성능 시험</td>
<td></td>
</tr>
<tr>
<td>산*</td>
<td>고고도시험장비</td>
<td>삼성 테크원</td>
<td>엔진 보기류 구성품 환경시험</td>
<td></td>
</tr>
<tr>
<td>산*</td>
<td>스핀시험</td>
<td>삼성 테크원</td>
<td>로터디스크 개발/수명시험</td>
<td></td>
</tr>
<tr>
<td>산*</td>
<td>엔진시험설(산업용)</td>
<td>삼성 테크원</td>
<td>엔진시험/내구/수락시험, 사포트/팬엔진</td>
<td></td>
</tr>
<tr>
<td>산*</td>
<td>엔진시험장비</td>
<td>삼성 테크원</td>
<td>엔진보기류 구성품 온/습도시험</td>
<td></td>
</tr>
<tr>
<td>산*</td>
<td>연료노즐분무시험장치</td>
<td>삼성 테크원</td>
<td>연료노즐 분무시험</td>
<td></td>
</tr>
</tbody>
</table>
(4) 전기/전자 분야

<table>
<thead>
<tr>
<th>구분</th>
<th>시험장비명</th>
<th>기관</th>
<th>용도</th>
<th>Spec.</th>
</tr>
</thead>
<tbody>
<tr>
<td>산</td>
<td>Oscilloscope</td>
<td>KAI</td>
<td>LRU 단위신호 레벨측정 등 신호분석(600MHz)</td>
<td></td>
</tr>
<tr>
<td>산</td>
<td>Spectrum Analyzer</td>
<td>KAI</td>
<td>RF 과형분석</td>
<td></td>
</tr>
<tr>
<td>산*</td>
<td>Acclerometer Cal. Sys.</td>
<td>KAI</td>
<td>T-50 센서교정장치</td>
<td></td>
</tr>
<tr>
<td>산*</td>
<td>Active Rod Antenna</td>
<td>KAI</td>
<td>KT-1 BAHB 시험 및 항전개발용</td>
<td></td>
</tr>
<tr>
<td>산*</td>
<td>Altimeter Encoding Test</td>
<td>KAI</td>
<td>고도계 IFF 시험용</td>
<td></td>
</tr>
<tr>
<td>산*</td>
<td>Attenuator Set</td>
<td>KAI</td>
<td>KT-1 BAHB 시험 및 항전개발용</td>
<td></td>
</tr>
<tr>
<td>구분</td>
<td>시험장비명</td>
<td>기관</td>
<td>용도</td>
<td>Spec.</td>
</tr>
<tr>
<td>------</td>
<td>------------------------------</td>
<td>------</td>
<td>-----------------------------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>산*</td>
<td>Avionic Hot Bench</td>
<td>KAI</td>
<td>KT-1 BAHB 시험 및 항전개발용</td>
<td></td>
</tr>
<tr>
<td>산*</td>
<td>Biconical Antenna</td>
<td>KAI</td>
<td>KT-1 BAHB 시험 및 항전개발용</td>
<td></td>
</tr>
<tr>
<td>산*</td>
<td>Close Field Probe</td>
<td>KAI</td>
<td>KT-1 BAHB 시험 및 항전개발용</td>
<td></td>
</tr>
<tr>
<td>산*</td>
<td>Current Probe</td>
<td>KAI</td>
<td>KT-1 BAHB 시험 및 항전개발용</td>
<td></td>
</tr>
<tr>
<td>산*</td>
<td>Decade Box</td>
<td>KAI</td>
<td>KT-1 기반 정밀 저항 측정</td>
<td></td>
</tr>
<tr>
<td>산*</td>
<td>Digital Multimeter</td>
<td>KAI</td>
<td>KT-1 BAHB 시험 및 항전개발용</td>
<td></td>
</tr>
<tr>
<td>산*</td>
<td>ELT Test Set</td>
<td>KAI</td>
<td>KT-1 BAHB 시험 및 항전개발용</td>
<td></td>
</tr>
<tr>
<td>산*</td>
<td>Function Generator</td>
<td>KAI</td>
<td>KT-1 BAHB 시험 및 항전개발용</td>
<td></td>
</tr>
<tr>
<td>산*</td>
<td>GCU Bench Tester</td>
<td>KAI</td>
<td>KT-1 Generator Control Unit 성능시험</td>
<td></td>
</tr>
<tr>
<td>산*</td>
<td>Hot Mock Up</td>
<td>KAI</td>
<td>KLHCMS/TADS/153 3Bus 통합 연동시험</td>
<td></td>
</tr>
<tr>
<td>산*</td>
<td>LISN</td>
<td>KAI</td>
<td>KT-1 BAHB 시험 및 항전개발용</td>
<td></td>
</tr>
<tr>
<td>산*</td>
<td>Log Periodic Antenna</td>
<td>KAI</td>
<td>KT-1 BAHB 시험 및 항전개발용</td>
<td></td>
</tr>
<tr>
<td>산*</td>
<td>Logic Analysis Sys Frame</td>
<td>KAI</td>
<td>T-50 신호/타이밍 분석용</td>
<td></td>
</tr>
<tr>
<td>산*</td>
<td>Luminance/Colorimeter</td>
<td>KAI</td>
<td>휘도, 색상측정</td>
<td></td>
</tr>
<tr>
<td>산*</td>
<td>Meter Cal.</td>
<td>KAI</td>
<td>T-50 원하는 전압/전류생성</td>
<td></td>
</tr>
<tr>
<td>산*</td>
<td>Network Analyzer</td>
<td>KAI</td>
<td>T-50 안테나간 전송 특성 확인</td>
<td></td>
</tr>
<tr>
<td>구분</td>
<td>시험장비명</td>
<td>기관</td>
<td>용도</td>
<td>Spec.</td>
</tr>
<tr>
<td>------</td>
<td>-------------------------------</td>
<td>------</td>
<td>-------------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>산*</td>
<td>PCI Analyzer Module</td>
<td>KAI</td>
<td>KT-1 BAHB 시험 및 항전 개발용</td>
<td></td>
</tr>
<tr>
<td>산*</td>
<td>PCMCIA Analyzer Module</td>
<td>KAI</td>
<td>KT-1 BAHB 시험 및 항전 개발용</td>
<td></td>
</tr>
<tr>
<td>산*</td>
<td>Power Meter</td>
<td>KAI</td>
<td>KT-1 BAHB 시험 및 항전 개발용</td>
<td></td>
</tr>
<tr>
<td>산*</td>
<td>Power Sensor</td>
<td>KAI</td>
<td>KT-1 BAHB 시험 및 항전 개발용</td>
<td></td>
</tr>
<tr>
<td>산*</td>
<td>Power Supply</td>
<td>KAI</td>
<td>KT-1 BAHB 시험 및 항전 개발용 (9.5kg)</td>
<td></td>
</tr>
<tr>
<td>산*</td>
<td>Ramp Test Set</td>
<td>KAI</td>
<td>KT-1 BAHB 시험 및 항전 개발용</td>
<td></td>
</tr>
<tr>
<td>산*</td>
<td>Signal Generator</td>
<td>KAI</td>
<td>KT-1 BAHB 시험 및 항전 개발용</td>
<td></td>
</tr>
<tr>
<td>산*</td>
<td>T-50 비상 제네레이터 스탠드</td>
<td>KAI</td>
<td>비상 Gen.시험용</td>
<td></td>
</tr>
<tr>
<td>산*</td>
<td>T-50 AC/DC Load Bank</td>
<td>KAI</td>
<td>전기 Rig 시험시 가상부하공급</td>
<td></td>
</tr>
<tr>
<td>산*</td>
<td>TACAN Test Set</td>
<td>KAI</td>
<td>TACAN Test Set 기능시험용</td>
<td></td>
</tr>
<tr>
<td>산*</td>
<td>Transient Limiter</td>
<td>KAI</td>
<td>KT-1 BAHB 시험 및 항전 개발용</td>
<td></td>
</tr>
<tr>
<td>산*</td>
<td>Wire Harness Tester</td>
<td>KAI</td>
<td>KT-1 배선 조립 시험용</td>
<td></td>
</tr>
<tr>
<td>연</td>
<td>3축 모션 시뮬레이터 시험실</td>
<td>KARI</td>
<td>하드웨어 연동 시뮬레이션시험(HILS)</td>
<td></td>
</tr>
<tr>
<td>구분</td>
<td>시험장비명</td>
<td>기관</td>
<td>용도</td>
<td>Spec.</td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
<td>------</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>연간</td>
<td>램프시험기(RampTest)</td>
<td>KARI</td>
<td>램프 시험</td>
<td>“Synthesized signal generator for MKR, VOR, LOC, G/SCOM Msytems with both FIXED and VAR frequency modes 8.33&2.5 kHz COMM Channel selection 1ppm TCXO master oscillator, simultaneous LOC-G /Output Sweep LOC DDM test autopilot capture mode New low power built-in counter for display of generator frequency CO MMXMT frequency 0dBm external frequencies from 1 MHz to at least 300 MHz”</td>
</tr>
<tr>
<td>연간</td>
<td>방향지시계(Angle Position Indicator)</td>
<td>KARI</td>
<td>방향 지시계</td>
<td>The 8810 Asyncro/resolver angle position indicator is a dual channel instrument featuring channel 1 for syncros and channel 2 for resolvers. It has a resolution of 0.001° with an accuracy of 0.004°. The display is either 0 to 360° or ±180°. Frequency range is 360 Hz to 1200 Hz or 200 Hz to 1200 Hz.</td>
</tr>
<tr>
<td>연간</td>
<td>전기방전시험기(ESD)</td>
<td>KARI</td>
<td>전기 방전 시험</td>
<td>정전기필스 발생최대 강도: 15,000V</td>
</tr>
<tr>
<td>연간</td>
<td>전압스파이크시험기 (Voltage Spike Test Set)</td>
<td>KARI</td>
<td>전압스파이크시험</td>
<td>RTCA/DO-160 Sec 17. 요구조건: 피드백 스위치: 50Ω±10% 와플장치 길이: 360mm 1분 이상 500 밀리초 전압: 전압스파이크 시험 RTCA/DO-160 Sec 19. 요구조건</td>
</tr>
<tr>
<td>구분</td>
<td>시험장비명</td>
<td>기관</td>
<td>용도</td>
<td>Spec.</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>연</td>
<td>타간 시험기 (Tacan Tester)</td>
<td>KARI</td>
<td>타간 시험</td>
<td>“Channels31(X):992 M HZ91(X):1178MHZ93(Y):1054MHZ29(Y):1116MHZA/A29(X,Y):1116MHZA/A93(X,Y):1054MHZAccuracy:+0.002%”</td>
</tr>
<tr>
<td>연</td>
<td>IFF 자동 무선 시험기 (IFF ransponder Test)</td>
<td>KARI</td>
<td>IFF 자동 무선시험</td>
<td>“Accurate measurement of transponder transmitting frequency, power and receiver sensitivity Auto test minimizes testtime Configuration control provides user selectable predetermined test limits GO/NO-GO or diagnostic operation Mode 4 stored code operation LCD display with automatic back light Hand held directional antenna”</td>
</tr>
<tr>
<td>연</td>
<td>Resolver/Synchro Simulator</td>
<td>KARI</td>
<td>Resolver/Synchro Simulator</td>
<td>“0.001° resolution 0.003° accuracy at no load 0.004° accuracy at full load Frequency 47Hz to 10kHz Programmable output voltages Dynamic mode to 35rps Size:9.5”W×3.47”H×15”D”</td>
</tr>
<tr>
<td>산</td>
<td>진동/충격시험기 (2XAS120-T4000)</td>
<td>LG 이노텍</td>
<td>Sine/Random 진동, 충격시험</td>
<td></td>
</tr>
<tr>
<td>산</td>
<td>낙하 시험기</td>
<td>LG 이노텍</td>
<td>항공 전자 장비 낙하 시험</td>
<td></td>
</tr>
<tr>
<td>구분</td>
<td>시험장비명</td>
<td>기관</td>
<td>용도</td>
<td>Spec.</td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
<td>------</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>산</td>
<td>요동 시험기 (1000SC)</td>
<td>LG 이노텍</td>
<td>항공 전자 장비 요동 시험</td>
<td></td>
</tr>
<tr>
<td>산</td>
<td>유압식 진동시험기</td>
<td>LG 이노텍</td>
<td>항공 전자 장비 진동 시험</td>
<td></td>
</tr>
<tr>
<td>산</td>
<td>침수 시험기</td>
<td>LG 이노텍</td>
<td>항공 전자 장비 침수 시험</td>
<td></td>
</tr>
<tr>
<td>산</td>
<td>항온조 (TVC/27A)</td>
<td>LG 이노텍</td>
<td>항공 전자 장비 온도/습도시험</td>
<td></td>
</tr>
<tr>
<td>산</td>
<td>Agree Chamber</td>
<td>LG 이노텍</td>
<td>항공 전자 장비 온도/습도시험</td>
<td></td>
</tr>
<tr>
<td>산</td>
<td>HS-50CUA</td>
<td>LG 이노텍</td>
<td>항공 전자 장비 진동 시험</td>
<td></td>
</tr>
<tr>
<td>산</td>
<td>Thermal Shock Chamber (ATS-320-V-10-705-LN2)</td>
<td>LG 이노텍</td>
<td>온도/열충격 시험 (SRU/LRU)</td>
<td></td>
</tr>
<tr>
<td>산</td>
<td>고도시험기</td>
<td>LG 이노텍</td>
<td>항공 전자 장비 고도 시험</td>
<td></td>
</tr>
<tr>
<td>연</td>
<td>항온 항습기</td>
<td>LG 이노텍</td>
<td>전자 장비 온도/습도 조절 챔버/환경 시험</td>
<td></td>
</tr>
<tr>
<td>학</td>
<td>동적 재료 시험기 (10ton) (Dynamic Material Testing Machine)</td>
<td>경상대</td>
<td>동적 재료 시험</td>
<td>"Dynamic loadcell: 10ton Stroke (8516 ton) Furnace max. 1000°C OPtemperature 12℃, 25℃, 50℃, C OOPgage Hydraulic wedge action grip (0 to 12.5 mm dia.)"</td>
</tr>
<tr>
<td>산</td>
<td>온도 진동 시험기 F-117-CHV-30-30)</td>
<td>삼성 탈레스</td>
<td>고온, 저온 진동 시험</td>
<td></td>
</tr>
<tr>
<td>산</td>
<td>온도 충격 시험기 (TSV-40)</td>
<td>삼성 탈레스</td>
<td>삼성 탈레스</td>
<td>온도 충격시험</td>
</tr>
<tr>
<td>산</td>
<td>온습도 시험기 (SE-1200)</td>
<td>삼성 탈레스</td>
<td>삼성 탈래스</td>
<td>고온, 저온, 습도시험</td>
</tr>
<tr>
<td>산</td>
<td>F136-CHMV-25-25-3</td>
<td>삼성 탈래스</td>
<td>항공 전자 장비 온/습도시험</td>
<td></td>
</tr>
<tr>
<td>구분</td>
<td>시험장비명</td>
<td>기관</td>
<td>용도</td>
<td>Spec.</td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>산</td>
<td>WP1606-CHM-2</td>
<td>삼성 탈레스</td>
<td>항공 전자 장비 온/습도시험</td>
<td></td>
</tr>
<tr>
<td>산</td>
<td>진동/충격시험기(2XAS120-T4000)</td>
<td>삼성 탈레스</td>
<td>Sine/Random 진동, 충격시험</td>
<td></td>
</tr>
<tr>
<td>산</td>
<td>ADT 시험장비</td>
<td>엠텍</td>
<td>GDT, GRS, AV성능시험</td>
<td></td>
</tr>
<tr>
<td>산</td>
<td>ADTC/DEMUX 전용시험장비</td>
<td>엠텍</td>
<td>ADTC/DEMUX 자체시험</td>
<td></td>
</tr>
<tr>
<td>산</td>
<td>GDT Simulator</td>
<td>엠텍</td>
<td>무인기 GDT 자체시험</td>
<td></td>
</tr>
<tr>
<td>산</td>
<td>Network분석기</td>
<td>엠텍</td>
<td>삼입손실, 위상 Delay 등 측정</td>
<td></td>
</tr>
<tr>
<td>산</td>
<td>PBA Function시험기(RAP-156)</td>
<td>엠텍</td>
<td>회로 탄력/안전등 시험</td>
<td></td>
</tr>
<tr>
<td>산</td>
<td>X-Y Recorder</td>
<td>엠텍</td>
<td>전압 및 전류 주이분석</td>
<td></td>
</tr>
<tr>
<td>산</td>
<td>Oscilloscope</td>
<td>엠텍</td>
<td>LRU 단위 신호 레벨 측정 등 신호 분석(600MHz)</td>
<td></td>
</tr>
<tr>
<td>산</td>
<td>Spectrum Analyzer</td>
<td>엠텍</td>
<td>RF 파형 분석</td>
<td></td>
</tr>
<tr>
<td>연</td>
<td>고속 고출력 회전기시험설비</td>
<td>전기연구원</td>
<td>발전기, 전동기 등 효율 측정 설비(2MW급)</td>
<td></td>
</tr>
<tr>
<td>연</td>
<td>복합 환경시험기</td>
<td>전자 부품 연구원</td>
<td>전자장비 1축 진동/진동시험 (Sine, Random)</td>
<td></td>
</tr>
<tr>
<td>연</td>
<td>열충격시험기</td>
<td>전자 부품 연구원</td>
<td>전자 부품 급격한 온도 변화 채비/열충격시험</td>
<td>Votsch/VT7012T-GroupKorea\nVotsch/HT7012T-GroupKorea\nACS/CST157-2TA\nCSKOREA\nTabaiEspec/TA-101S-W(주)JS엔지니어</td>
</tr>
<tr>
<td>구분</td>
<td>시험장비명</td>
<td>기관</td>
<td>용도</td>
<td>Spec.</td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>연</td>
<td>HALT시험기</td>
<td>전자부품연구원</td>
<td>전자장비 초가속 수명시험</td>
<td>Temperaturerange(℃): -100200
Dewpointrange(℃): +5+83
InternalDimensions: Clear(WxDxH)mm: 115011501700
Movingtable inlowposition(WxDxH)mm: 115011501190
Movingtableinhighposition(WxDxH)mm: 115011501190</td>
</tr>
<tr>
<td>연</td>
<td>PCT장비</td>
<td>전자부품연구원</td>
<td>전자장비 고온가습시험</td>
<td></td>
</tr>
<tr>
<td>산</td>
<td>고도시험기</td>
<td>전자부품연구원</td>
<td>항공 전자장비 고도시험</td>
<td></td>
</tr>
<tr>
<td>연</td>
<td>항온 항습기</td>
<td>전자부품연구원</td>
<td>전자장비 온도/습도 조절 챔버/환경시험</td>
<td>Votsch/VC7020T-GROUPKOREA
Votsch/VC7034T-GROUPKOREA
Jeiotech/TH-I-300, TH-I-600
Jeiotech
ACS/HYGROS340
CACS(주)
ACS/HYGROS600
CACS(주)
Tabai(ESPEC)/SH-661JS엔지니어링
CLIMATIC/Excal221-H</td>
</tr>
<tr>
<td>산</td>
<td>Oscilloscope</td>
<td>퍼스텍</td>
<td>LRU 단위 신호 레벨 측정 등 신호 분석(600MHz)</td>
<td></td>
</tr>
<tr>
<td>산</td>
<td>환경시험 Chambers</td>
<td>퍼스텍</td>
<td>진동, 충격, 온도 시험등</td>
<td></td>
</tr>
<tr>
<td>산</td>
<td>Frequency Counter</td>
<td>퍼스텍</td>
<td>전자 부품 주파수 측정용(50MHz)</td>
<td></td>
</tr>
<tr>
<td>연</td>
<td>위상접음 측정 시스템</td>
<td>표준과학연</td>
<td>고정밀 주파수 발전기 위상 접음 평가</td>
<td></td>
</tr>
<tr>
<td>구분</td>
<td>시험장비명</td>
<td>기관</td>
<td>용도</td>
<td>Spec.</td>
</tr>
<tr>
<td>------</td>
<td>-----------------</td>
<td>-----------</td>
<td>-------------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>산</td>
<td>WR 100 Recorder</td>
<td>한화</td>
<td>등급</td>
<td>8채널X-Y-T기록장치</td>
</tr>
<tr>
<td>산</td>
<td>요코카와 Recorder</td>
<td>한화</td>
<td>등급</td>
<td>X-Y기록장치</td>
</tr>
<tr>
<td>산</td>
<td>Mili-Ohm Meter</td>
<td>한화</td>
<td>전기 부품 밀리 Ohm 측정</td>
<td></td>
</tr>
<tr>
<td>산</td>
<td>OR 1400 Recorder</td>
<td>한화</td>
<td>등급</td>
<td>4채널X-Y-T기록장치</td>
</tr>
</tbody>
</table>

(5) 통신 분야

<table>
<thead>
<tr>
<th>구분</th>
<th>시험장비명</th>
<th>기관</th>
<th>용도</th>
<th>Spec.</th>
</tr>
</thead>
<tbody>
<tr>
<td>산*</td>
<td>IFF Test Set</td>
<td>KAI</td>
<td>등급</td>
<td>KT-1 IFF 기능</td>
</tr>
<tr>
<td>산*</td>
<td>UHF AVUM Test Set</td>
<td>KAI</td>
<td>등급</td>
<td>ARC-164 UHFAVUM 시험</td>
</tr>
<tr>
<td>산*</td>
<td>VHF/UHF Test Set</td>
<td>KAI</td>
<td>등급</td>
<td>KT-1 통신 기능</td>
</tr>
<tr>
<td>연*</td>
<td>추적레이더</td>
<td>KARI</td>
<td>등급</td>
<td></td>
</tr>
<tr>
<td>산</td>
<td>통신/광섬유 신호 측정 및 평가</td>
<td>LIG</td>
<td>등급</td>
<td>광섬유 관련 계측 및 평가기술</td>
</tr>
<tr>
<td>산</td>
<td>통신/광섬유 신호 측정 및 평가</td>
<td>넥스원</td>
<td>등급</td>
<td>광섬유 관련 계측 및 평가기술</td>
</tr>
<tr>
<td>산</td>
<td>통신/광섬유 신호 측정 및 평가</td>
<td>삼성SDI</td>
<td>등급</td>
<td>광섬유 관련 계측 및 평가기술</td>
</tr>
<tr>
<td>연*</td>
<td>고정밀 주파수 측정 시스템</td>
<td>표준과학연구소</td>
<td>등급</td>
<td>항법/통신 고정밀 주파수 측정 기능 평가</td>
</tr>
</tbody>
</table>
(6) 유압 분야

<table>
<thead>
<tr>
<th>구분</th>
<th>시험장비명</th>
<th>기관</th>
<th>용도</th>
<th>Spec.</th>
</tr>
</thead>
<tbody>
<tr>
<td>산*</td>
<td>지상유압제어장치</td>
<td>KAI</td>
<td>유압 선택밸브 작동용</td>
<td></td>
</tr>
<tr>
<td>산*</td>
<td>Hyd. Power Unit</td>
<td>KAI</td>
<td>유압 시험 장비 5000psi</td>
<td></td>
</tr>
<tr>
<td>산*</td>
<td>Hyd. Test Pump</td>
<td>KAI</td>
<td>KT-1 유압 시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td>유압 시스템 성능 시험 장치(Hydraulic Pump Unit Performance Test Apparatus)</td>
<td>경상대</td>
<td>유압 시스템 성능 시험</td>
<td></td>
</tr>
<tr>
<td>산*</td>
<td>Hydraulic Tester</td>
<td>다원프릭션</td>
<td>정적, 동적 누수시험, 정적압력시험, 내구시험</td>
<td></td>
</tr>
<tr>
<td>산*</td>
<td>오일분석기(SPECTROILANALYSER)</td>
<td>대한항공</td>
<td>HYDRAULICOIL 내 마모금속성분분석15 CHANNEL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>시보 서보어플러 성능시험장비</td>
<td>동명중</td>
<td>항공 시보 서보어플러 성능시험장비</td>
<td></td>
</tr>
<tr>
<td></td>
<td>시보 시험장비</td>
<td>동명중</td>
<td>시보시험장비 성능시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td>유압 펌프 성능시험장비</td>
<td>동명중</td>
<td>펌프압력, 유량, 빠름, 회전수 등 측정</td>
<td></td>
</tr>
<tr>
<td></td>
<td>"항공/특수유압유성 정도검사측정범위:IS OY-24등급, NASO-12 등급최대작동압력:420bar Flow rate:380ml/min시험시간:4분무게:8kg"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>산*</td>
<td>오일 청정도 검사장비</td>
<td>위아중공업</td>
<td>오일 청정도 검사</td>
<td></td>
</tr>
<tr>
<td>연*</td>
<td>공기압 살린더 신뢰성 평가 장비</td>
<td>한국기계연구원</td>
<td>공기압 살린더 내구성시험</td>
<td></td>
</tr>
<tr>
<td>구분</td>
<td>시험장비명</td>
<td>기관</td>
<td>용도</td>
<td>Spec.</td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
<td>------</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>연*</td>
<td>공압 볼브 성능 측정 장비</td>
<td>한국 기계 연구원</td>
<td>신뢰성 시험</td>
<td></td>
</tr>
<tr>
<td>연*</td>
<td>다기능 재어 볼브 수명 평가 장비</td>
<td>한국 기계 연구원</td>
<td>유압 작동기 조종 유니트 볼브 내구 성능 시험</td>
<td>Reservoir Capacity: 51.7 Gallons 150GPM, flow capacity & LPM 440VAC/60Hz/3phower 90/10 CopperNickel oil to water heat exchanger Filteration at pump inlet 3 micron, Outlet filter 10 micron</td>
</tr>
<tr>
<td>연*</td>
<td>대용량 Hyd. Power Unit</td>
<td>한국 기계 연구원</td>
<td>유압 기기의 시험 중 무하 유압 및 유방 공급 성능 평가</td>
<td></td>
</tr>
<tr>
<td>연*</td>
<td>대형 유압 실린더 신뢰성 평가 장비</td>
<td>한국 기계 연구원</td>
<td>대형 유압 실린더 수명 평가</td>
<td></td>
</tr>
<tr>
<td>연</td>
<td>산업용 초고압 밸브 수명 평가 장비</td>
<td>한국 기계 연구원</td>
<td>초고압용 유압 밸브 내구, 성능 시험 (700kgf/cm2)</td>
<td></td>
</tr>
<tr>
<td>연</td>
<td>시보 액추에이터 수명 평가 장비</td>
<td>한국 기계 연구원</td>
<td>시보 작동기 내구, 성능 시험 (行程 1,500mm)</td>
<td></td>
</tr>
<tr>
<td>연</td>
<td>시보 볼브 수명 평가 장비</td>
<td>한국 기계 연구원</td>
<td>시보 작동기용 밸브 내구, 성능 시험</td>
<td></td>
</tr>
<tr>
<td>연</td>
<td>소형 유압실린더 신뢰성 평가 장비</td>
<td>한국 기계 연구원</td>
<td>소형 유압 실린더 수명 평가</td>
<td></td>
</tr>
<tr>
<td>연</td>
<td>압축공기 압력 조정 수명 평가 장비</td>
<td>한국 기계 연구원</td>
<td>공압 작동기 유니트 내구, 성능 시험</td>
<td></td>
</tr>
<tr>
<td>연</td>
<td>유압 Cont. Regulator 성능 측정 장비</td>
<td>한국 기계 연구원</td>
<td>Pump Reg. 성능 시험</td>
<td></td>
</tr>
<tr>
<td>연</td>
<td>유압 PWM Valve 성능 측정 시험 장비</td>
<td>한국 기계 연구원</td>
<td>유압 가속도/압력 측정</td>
<td></td>
</tr>
<tr>
<td>구분</td>
<td>시험장비명</td>
<td>기관</td>
<td>용도</td>
<td>Spec.</td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
<td>------</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>연</td>
<td>유압 모터 신뢰성 평가장비</td>
<td>한국기계연구원</td>
<td>축/방사 퍼스톤 유압모터 신뢰성시험</td>
<td></td>
</tr>
<tr>
<td>연</td>
<td>유압 필터 수명 평가장비</td>
<td>한국기계연구원</td>
<td>유압작동필터링유니트내구성능시험</td>
<td></td>
</tr>
<tr>
<td>연</td>
<td>초고압압력조절밸브 수명평가장비</td>
<td>한국기계연구원</td>
<td>유압작동식구동밸브의내구/성능시험(펌프압력150MPa)</td>
<td></td>
</tr>
<tr>
<td>연</td>
<td>축압기 수명 평가장비</td>
<td>한국기계연구원</td>
<td>축압기내구성능시험(350bar)</td>
<td></td>
</tr>
<tr>
<td>연</td>
<td>텐덤펌프수명평가장비</td>
<td>한국기계연구원</td>
<td>유압펌프내구성능시험</td>
<td></td>
</tr>
<tr>
<td>연</td>
<td>Particle Counter Device</td>
<td>한국기계연구원</td>
<td>유압작동식오염도분석장치</td>
<td></td>
</tr>
<tr>
<td>산</td>
<td>유압시험장비(Hyd Test Stand)</td>
<td>한국헬리콥터사</td>
<td>유압시험</td>
<td>“Actuator:4channel5ton(1ea),2.5ton(3ea)Actuator Exciting Frequency:0~50Hz Rotar yactuator:1channel”</td>
</tr>
<tr>
<td>산*</td>
<td>AMS Test Stand</td>
<td>한화</td>
<td>유압작동기수락시험 5000psi</td>
<td></td>
</tr>
<tr>
<td>산*</td>
<td>Cylinder Test Stand</td>
<td>한화</td>
<td>비행조종면작동기수락시험</td>
<td></td>
</tr>
<tr>
<td>산*</td>
<td>F-16 ISA Tester Stand</td>
<td>한화</td>
<td>유압작동기수락시험 5000psi</td>
<td></td>
</tr>
<tr>
<td>산*</td>
<td>GKN Test Stand</td>
<td>한화</td>
<td>유압작동기수락시험 5000psi</td>
<td></td>
</tr>
<tr>
<td>산*</td>
<td>H-X Test Stand</td>
<td>한화</td>
<td>유압작동기수락시험 5000psi</td>
<td></td>
</tr>
<tr>
<td>산*</td>
<td>KMK Test Stand</td>
<td>한화</td>
<td>유압작동기수락</td>
<td></td>
</tr>
<tr>
<td>구분</td>
<td>시험장비명</td>
<td>기관</td>
<td>용도</td>
<td>Spec.</td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
<td>------</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>산*</td>
<td>Parker Test Stand</td>
<td>한화</td>
<td>요구 작동기, 밸브 시험 5000psi</td>
<td></td>
</tr>
<tr>
<td>산*</td>
<td>Pneumatic/Low Pre. Test Stand</td>
<td>한화</td>
<td>공유압 기기 시험, 0-5000psi</td>
<td></td>
</tr>
<tr>
<td>산*</td>
<td>T-50 Test Stand</td>
<td>한화</td>
<td>요구 작동기, 밸브 시험 5000psi</td>
<td></td>
</tr>
<tr>
<td>산*</td>
<td>Timer</td>
<td>한화</td>
<td>작동기의 작동 시간 측정(KT-1)</td>
<td></td>
</tr>
<tr>
<td>산*</td>
<td>Valve Test Stand</td>
<td>한화</td>
<td>유압 밸브 시험 5000psi</td>
<td></td>
</tr>
<tr>
<td>산*</td>
<td>Velocity Tester</td>
<td>한화</td>
<td>작동기의 작속도 측정(KT-1)</td>
<td></td>
</tr>
</tbody>
</table>

(7) 작동장치 분야

<table>
<thead>
<tr>
<th>구분</th>
<th>시험장비명</th>
<th>기관</th>
<th>용도</th>
<th>Spec.</th>
</tr>
</thead>
<tbody>
<tr>
<td>산*</td>
<td>Brake Rig Test</td>
<td>KAI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>산</td>
<td>LGCS Rig Test</td>
<td>KAI</td>
<td>Brake Rig Test</td>
<td></td>
</tr>
<tr>
<td>산*</td>
<td>MLG Support Structure Test</td>
<td>KAI</td>
<td>MLG 구조 지지 시험</td>
<td></td>
</tr>
<tr>
<td>산*</td>
<td>NLG Support Structure Test</td>
<td>KAI</td>
<td>NLG 구조 지지 시험</td>
<td></td>
</tr>
<tr>
<td>산*</td>
<td>Normal/Emergency Retraction/Extension Test</td>
<td>KAI</td>
<td>외연 시험</td>
<td></td>
</tr>
<tr>
<td>산</td>
<td>NWS Rig Test</td>
<td>KAI</td>
<td>LGCS Rig Test</td>
<td></td>
</tr>
<tr>
<td>산*</td>
<td>Ramp/Low/Mid/High Speed Taxi Test</td>
<td>KAI</td>
<td>Speed Taxi</td>
<td></td>
</tr>
<tr>
<td>구분</td>
<td>시험장비명</td>
<td>기관</td>
<td>용도</td>
<td>Spec.</td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
<td>-------</td>
<td>---</td>
<td>---------------------------</td>
</tr>
<tr>
<td>산</td>
<td>Tail Hook Engage Test</td>
<td>KAI</td>
<td>Tail Hook Engage Test</td>
<td></td>
</tr>
<tr>
<td>산</td>
<td>LG Drop test</td>
<td>KARI</td>
<td>Drop test</td>
<td></td>
</tr>
<tr>
<td>산</td>
<td>LG Fatigue Test</td>
<td>KARI</td>
<td>Fatigue Test</td>
<td></td>
</tr>
<tr>
<td>산</td>
<td>LG Strength Test</td>
<td>KARI</td>
<td>Strength Test</td>
<td></td>
</tr>
<tr>
<td>연</td>
<td>산업용 Brake 수명 평가 시험 장비</td>
<td>KIMM</td>
<td>NWS Rig Test</td>
<td></td>
</tr>
<tr>
<td>연*</td>
<td>착륙장치 연계어댑터 신뢰성평가 장비</td>
<td>KIMM</td>
<td>항공기 착륙 장치용 연계어댑터 성능 및 수명 시험</td>
<td></td>
</tr>
<tr>
<td>산</td>
<td>Dynamo Test</td>
<td>LG개발업체</td>
<td>Dynamo Test</td>
<td></td>
</tr>
<tr>
<td>산*</td>
<td>Brake Rig Test</td>
<td>LG개발업체(국내/해외)</td>
<td>Brake Rig Test</td>
<td></td>
</tr>
<tr>
<td>산</td>
<td>LGCS Rig Test</td>
<td>LG개발업체(국내/해외)</td>
<td>Brake Rig Test</td>
<td></td>
</tr>
<tr>
<td>산</td>
<td>NWS Rig Test</td>
<td>LG개발업체(국내/해외)</td>
<td>LGCS Rig Test</td>
<td></td>
</tr>
<tr>
<td>산</td>
<td>LG Drop test</td>
<td>LG개발업체(국내/해외)</td>
<td>Drop test</td>
<td></td>
</tr>
<tr>
<td>산</td>
<td>LG Fatigue Test</td>
<td>LG개발업체(국내/해외)</td>
<td>Fatigue Test</td>
<td></td>
</tr>
<tr>
<td>산</td>
<td>LG Strength Test</td>
<td>LG개발업체(국내/해외)</td>
<td>Strength Test</td>
<td></td>
</tr>
<tr>
<td>산</td>
<td>LRU Endurance/Fatigue Test</td>
<td>LRU,개발업체(국내/해외)</td>
<td>Endurance/Fatigue Test</td>
<td></td>
</tr>
<tr>
<td>산</td>
<td>LRU Environmental Tests</td>
<td>LRU,개발업체(국내/해외)</td>
<td>Environmenta Tests</td>
<td></td>
</tr>
<tr>
<td>산</td>
<td>LRU Function Test</td>
<td>LRU,개발업체(국내/해외)</td>
<td>Function Test</td>
<td></td>
</tr>
<tr>
<td>산</td>
<td>LRU Strength Test</td>
<td>LRU,개발업체(국내/해외)</td>
<td>Strength Test</td>
<td></td>
</tr>
<tr>
<td>구분</td>
<td>시험장비명</td>
<td>기관</td>
<td>용도</td>
<td>Spec.</td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>산*</td>
<td>Lab Scale Dynamometer</td>
<td>다원 프립션</td>
<td>마찰계수, 마모량, 마찰인정성, 상대동적성, 진동소음평가</td>
<td></td>
</tr>
<tr>
<td>산*</td>
<td>Dynamo Test</td>
<td>다원 프립션</td>
<td>Dynamo Test</td>
<td></td>
</tr>
<tr>
<td>산*</td>
<td>Full Scale Inertia Dynamometer</td>
<td>다원 프립션</td>
<td>Full Scale Inertia Dynamometer</td>
<td></td>
</tr>
<tr>
<td>산*</td>
<td>KF-16 생산 수락 시험장비</td>
<td>위아</td>
<td>착륙장치 swing/내압시험</td>
<td></td>
</tr>
<tr>
<td>산*</td>
<td>KT-1 생산 수락 시험장비</td>
<td>위아</td>
<td>착륙장치 swing/내압시험</td>
<td></td>
</tr>
<tr>
<td>산*</td>
<td>LYNX 생산 수락 시험장비</td>
<td>위아</td>
<td>생산 수락 시험</td>
<td></td>
</tr>
<tr>
<td>산*</td>
<td>T-50 기능 시험장비</td>
<td>위아</td>
<td>T-50 착륙장치 Mock Up 선형 개발</td>
<td></td>
</tr>
<tr>
<td>산*</td>
<td>T-50 생산 수락 시험장비</td>
<td>위아</td>
<td>내압/생산 수락시험</td>
<td></td>
</tr>
<tr>
<td>산*</td>
<td>UH-60P 생산 수락 시험장비</td>
<td>위아</td>
<td>양산 수락시험</td>
<td></td>
</tr>
</tbody>
</table>

(8) 환경시험 분야

<table>
<thead>
<tr>
<th>구분</th>
<th>시험장비명</th>
<th>기관</th>
<th>용도</th>
<th>Spec.</th>
</tr>
</thead>
<tbody>
<tr>
<td>연*</td>
<td>고온 구조시험장비</td>
<td>ADD</td>
<td>구조물 운도가열장비</td>
<td></td>
</tr>
<tr>
<td>연*</td>
<td>EMI/EMC 평가시스템</td>
<td>ADD</td>
<td>전자파 평가시험 (29x25x9.3m)</td>
<td></td>
</tr>
<tr>
<td>연*</td>
<td>전자파 차폐시험</td>
<td>ADD</td>
<td>시스템/부속장비 EMI/EMC시험</td>
<td></td>
</tr>
<tr>
<td>연*</td>
<td>전자파 환경시험실</td>
<td>ADD</td>
<td>간섭, 정전기, 낙뢰등시험</td>
<td></td>
</tr>
<tr>
<td>구분</td>
<td>시험장비명</td>
<td>기관</td>
<td>용 도</td>
<td>Spec.</td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
<td>------</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>산</td>
<td>엄수 분무 시험기 (SALT FOG CABINET)</td>
<td>KAI</td>
<td>엄수 분무 시험</td>
<td>ASTMB117NozzleAirPressure:1025psiVolum eofSaltSprayperhour:1 ～2ml/hrChamberTemperaturecontrol:9297d egreeF</td>
</tr>
<tr>
<td>산</td>
<td>Mini shield Room</td>
<td>KAI</td>
<td>T-50 간이 고정용 전자파 차폐실</td>
<td></td>
</tr>
<tr>
<td>연*</td>
<td>EMI/EMC 평가시스템</td>
<td>KAI</td>
<td>전자파 평가 시험 (29x25x9.3m)</td>
<td></td>
</tr>
<tr>
<td>연</td>
<td>소형 공력 가열 시험설비(Aerodynamic)</td>
<td>KARI</td>
<td></td>
<td>IBM-PCAT(MHPC소 프트웨어포함)-1대Microstarcontroller-2대Ches sellchartrecoder-2대He ater</td>
</tr>
<tr>
<td>연</td>
<td>시험기 온도 제어 장치 (Testing Temperature Control System)</td>
<td>KARI</td>
<td>전기열식공기가열징 치Controlpanel:1EA-공 기가열기:1EA</td>
<td></td>
</tr>
<tr>
<td>연</td>
<td>열확산도 시험기 (Thermal Conductivity Analyzer)</td>
<td>KARI</td>
<td></td>
<td>HighspeedpulsesourceOperatingtemperature:501000℃HigherTem peratureaccuracy±0.1℃BetterThermaldiffu sivityrange:30.001cm2/s</td>
</tr>
<tr>
<td>연</td>
<td>전자파 환경시험용 RF 과파 즘프 (RF Power Amplifier)</td>
<td>KARI</td>
<td></td>
<td>RFamplifier1000L사용 가능주파수대역:10kHz 0220MHz</td>
</tr>
<tr>
<td>연</td>
<td>온도/습도 시험 챗버 (Environmental Chamber)</td>
<td>KARI</td>
<td></td>
<td>Interiordimension:102cm×100cm×97cmvolume:986litersWindowsize:3 8cm×48cmTemperaturerange:-70℃~+180℃T emperatureuniformity:±0.5℃Coolingability:−3 .21℃/minHeatingability:+7℃/min</td>
</tr>
<tr>
<td>구분</td>
<td>시험장비명</td>
<td>기관</td>
<td>용도</td>
<td>Spec.</td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
<td>------</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>연</td>
<td>낙뢰 간접 영향 시험 장비 (MIG-OS-MB) (Induced Lightning Testing Equipment)</td>
<td>KARI</td>
<td></td>
<td>DO-160D Waveforms (WF2 & WF3) WF2 - 0.1/6.4ns (40 up to 1600V/320A at 1600V) WF3 - 1MHz (80 up to 3200V/1280A at 3200V) WF3 - 10MHz (80 up to 3200V/1280A at 3200V)</td>
</tr>
<tr>
<td>산</td>
<td>TEM Cell</td>
<td>LG 이노텍</td>
<td>전자파 차폐 소형 전자파 시험장비</td>
<td></td>
</tr>
<tr>
<td>연*</td>
<td>EMI/EMC 평가시스템</td>
<td>LG 이노텍</td>
<td>전자파 평가 시험 (29x25x9.3m)</td>
<td></td>
</tr>
<tr>
<td>학</td>
<td>부식 환경 시험기</td>
<td>경상대</td>
<td>기후한 환경 조건하에서 제품의 신뢰성 시험</td>
<td></td>
</tr>
<tr>
<td>학</td>
<td>일부한석기 (Thermal Analyzer)</td>
<td>경상대</td>
<td>열 분석</td>
<td>"TG,TG-DTA:ambient to1600℃ Simultaneous measuring TG-DTAor TG-DSCupto1600℃ Heatingrate:0.1~99.9℃/mi nSamplingcapacity:20 mgAtmosphere:Air,Ar, N2"</td>
</tr>
<tr>
<td>학</td>
<td>흡음성 측정 시스템 (Absorption Property Measurement System)</td>
<td>경상대</td>
<td>흡음성 측정</td>
<td>"AbsorptionRatioMeasurement System:duct for low?highfrequencyacousticalpropertymeasurementsystem Diameter:1 /4inFrequencyRange:2 0Hz15Hz ±3dB,100Hz10kHz ±1dB Sensitivity: 50mV/Pa±5%Noise level(20Hz~20kHz) <100μA,A Weighted <30μA"</td>
</tr>
<tr>
<td>학</td>
<td>열변형 해석 (Thermomechanical Analysis)</td>
<td>고려대</td>
<td>열변형 해석</td>
<td>측정범위:RT~1000℃ 시료:pellet</td>
</tr>
<tr>
<td>학</td>
<td>일부한석기 (Thermal Analysis System)</td>
<td>국민대</td>
<td>일부한석</td>
<td>"1500℃까지가능 0.1~60 ℃/minSensitivity<5μW, 0.1μWSelf-diagnostica ndgasflow"</td>
</tr>
<tr>
<td>구분</td>
<td>시험장비명</td>
<td>기관</td>
<td>용도</td>
<td>Spec.</td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
<td>------</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>산</td>
<td>환경시험기 (Constant Temperature Humidity Chamber)</td>
<td>대한항공</td>
<td>환경시험</td>
<td>온도범위: -40100℃ 습도범위: 3098%RH</td>
</tr>
<tr>
<td>산</td>
<td>염수 분무 시험기 (SALTFOGCABINET)</td>
<td>대한항공</td>
<td>염수 분무시험</td>
<td>ASTM B117 Nozzle Air Pressure: 1025psi Volume of Salt Spray per hour: 12ml/hr Chamber Temperature Control: 92~97degreeF</td>
</tr>
<tr>
<td>산</td>
<td>시차 주사 열분석기 (Differential Scanning Calorimeter)</td>
<td>대한항공</td>
<td>시차 주사열분석</td>
<td>"기준물질과 시료를 같은 조건에서 가열하여 시료의 물리, 화학적 변화 측정 -180~725℃"</td>
</tr>
<tr>
<td>산</td>
<td>환경시험기 (Constant Temperature Humidity Chamber)</td>
<td>데크</td>
<td>환경시험</td>
<td>온도범위: -40100℃ 습도범위: 3098%RH</td>
</tr>
<tr>
<td>연</td>
<td>열전도도시험기 (Thermal Conductivity Meter)</td>
<td>데크</td>
<td>열전도시험</td>
<td>18~320degree시료크기: 150 X150mm</td>
</tr>
<tr>
<td>연</td>
<td>열분석기 (Differential Scanning Calorimetry/Thermo Gravimetric Analyzer)</td>
<td>데크</td>
<td>열분석</td>
<td>DSC: -150~550degree TGA: 700degree</td>
</tr>
<tr>
<td>연*</td>
<td>EMI/EMC 평가시스템</td>
<td>델파이</td>
<td>전자파평가시험 (29x25x9.3m)</td>
<td></td>
</tr>
<tr>
<td>학</td>
<td>열분석기 (Thermal Analysis System)</td>
<td>부산대</td>
<td>열분석</td>
<td>Temperature range: 201600℃ Scanning rate: 0.0199.99℃/min DTA module: detection limit: 50 microwatts DSC module: detection limit: 10 microwatts TGA module:</td>
</tr>
<tr>
<td>산</td>
<td>염수 분무 시험기 (SALTFOGCABINET)</td>
<td>삼성달레스</td>
<td>염수 분무시험</td>
<td>ASTM B117 Nozzle Air Pressure: 1025psi Volume of Salt Spray per hour: 12ml/hr Chamber Temperature Control: 92~97degreeF</td>
</tr>
<tr>
<td>구분</td>
<td>시험장비명</td>
<td>기관</td>
<td>용도</td>
<td>Spec.</td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
<td>------</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>산</td>
<td>온도/랜덤 진동 시험기 (Temperature Random Vibration Tester)</td>
<td>삼성 탈레스</td>
<td>온도/랜덤 진동 시험</td>
<td>“Temp.range: -73℃+177℃ Temp.changerate: 5℃/min Vibration Frequency range: 52000Hz Workspace: 1828mm(D)×1371mm(D)×1428mm(H) 시험항목: 고온, 저온 온도 /랜덤진동시험”</td>
</tr>
<tr>
<td>연</td>
<td>온도/습도 시험 챔버 (Environmental Chamber)</td>
<td>삼성 탈레스</td>
<td></td>
<td>Interior dimension: 102cm×100cm×97cm volume: 986 liters Window size: 8cm×48cm Temperature range: -70℃~+180℃ Temperature uniformity: ±0.5℃ Cooling ability: -3.21℃/min Heating ability: +7℃/min</td>
</tr>
<tr>
<td>산</td>
<td>염수 분무 시험기 (SALTFOGCABINET)</td>
<td>삼성 테크원</td>
<td>염수 분무 시험</td>
<td>ASTM B117 Nozzle Air Pressure: 1025psi Volume of Salt Spray per hour: 12ml/hr Chamber Temperature control: 92~97 degreeF</td>
</tr>
<tr>
<td>산</td>
<td>가열 가압 시험기 (Hot Pressure Device)</td>
<td>삼양 캐날텍</td>
<td>가열 가압 시험</td>
<td>세미믹스분말 및 성형체를 고온에서 일정방향으로 가압함으로써 제한된 조건의 가열된 시험대에 대형시료를 적용하여 중합품질을 평가하는 이상온도 환경 조건을 가진 가열저온장치</td>
</tr>
<tr>
<td>산</td>
<td>저온 저장고 (Cold Chamber)</td>
<td>삼양 캐날텍</td>
<td>저온 저장</td>
<td>“장기보관을 위한 다용도 저장고가 아닌 실험실이 아닌 저온고온장치”</td>
</tr>
<tr>
<td>산</td>
<td>항온 항습기 (Temperature & Humidity Chamber)</td>
<td>삼양 캐날텍</td>
<td>항온/항습</td>
<td>“각종 실수실험을 위한 표준의 전처리 항온항습용 기온습도범위: -20℃+100℃, 습도범위: 2098%, RH온도 조절방식: 평균조절방식(BTHCSystem)”</td>
</tr>
<tr>
<td>산</td>
<td>온/습도 시험기</td>
<td>엠택</td>
<td>고온 저온 습도시험 (-55~80도)</td>
<td></td>
</tr>
<tr>
<td>구분</td>
<td>시험장비명</td>
<td>기관</td>
<td>용도</td>
<td>Spec.</td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
<td>------</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>학</td>
<td>저온 열분석기 (Thermal Analysis System)</td>
<td>용산대</td>
<td>저온열 분석</td>
<td>DSC standard: 상온725 °C DSC/RCS: 70350 °C DSC/LNCA: 150~350 °C</td>
</tr>
<tr>
<td>산</td>
<td>염수 분무 시험기 (SALTFOGCABINET)</td>
<td>위아중공업</td>
<td>염수 분무 시험</td>
<td>ASTM B117, Nozzle Air Pressure: 1025psi, Volumetric Flow Rate: 12ml/hr, Chamber Temperature Control: 92~97°F</td>
</tr>
<tr>
<td>학</td>
<td>열분석기 (Thermal Analysis System)</td>
<td>인하대</td>
<td>열분석</td>
<td>Temperature range: ambient1600 °C, Sensitivity: 0.0220 °C/cm, Samplesize: up to 75 cubic millimeter</td>
</tr>
<tr>
<td>연*</td>
<td>EMI/EMC 평가 시스템</td>
<td>자동차 부품 연구원</td>
<td>전자파 평가 시험 (29x25x9.3m)</td>
<td>DO-160D Waveforms (WF2 & WF3) WF2 - 0.1/6.4ns (40 up to 1600V/320A at 1600V) WF3 - 1MHz (80 up to 3200V/1280A at 3200V) WF3 - 10MHz (80 up to 3200V/1280A at 3200V)</td>
</tr>
<tr>
<td>연</td>
<td>낙뢰 간접 영향 시험 장비 (MIG-OS-MB) (Induced Lightning Testing Equipment)</td>
<td>전기연구원</td>
<td>전기시험</td>
<td></td>
</tr>
<tr>
<td>연</td>
<td>소음 분석 시스템 (Noise Measurement System)</td>
<td>전력연구원</td>
<td>소음 분석</td>
<td>측정범위(최대100KHz), 측정정밀도가우수(24비트 이상) 등 사례에 따라 제한, 측정(32채널까지) 장시간 데이터를 레코딩할 수 있는 기능, 진동/소음특성 실험, 총합 및 총합, 소음 분석소프트웨어(주파수분석등)</td>
</tr>
<tr>
<td>연</td>
<td>전자기 적합성 시험 장치 (EMC Test Set)</td>
<td>전력연구원</td>
<td>EMC 시험</td>
<td></td>
</tr>
<tr>
<td>구 분</td>
<td>시험장비명</td>
<td>기 관</td>
<td>용 도</td>
<td>Spec.</td>
</tr>
<tr>
<td>-------</td>
<td>------------</td>
<td>------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>학</td>
<td>학열분석기 (Thermal Analyzer)</td>
<td>전북대</td>
<td>학열</td>
<td>TMAMaximumsensitivity:0.1umLinearity:±0.5%Temperaturerange:-150~1000℃Maximumsampleheight:25mmMaximumsamplediameter:10mm</td>
</tr>
<tr>
<td>학</td>
<td>동적기계적열분석기 (Thermal Mechanical Analyser)</td>
<td>조선대</td>
<td>동적 기계적 열분석</td>
<td>측정주파수영역:0.01200Hz온도범위:-150300℃</td>
</tr>
<tr>
<td>산</td>
<td>열교환기 풍동 시험 장비</td>
<td>퍼스텍</td>
<td>열교환기 및 공력부하 시험</td>
<td></td>
</tr>
<tr>
<td>연</td>
<td>열전도도 시험기 (Thermal Conductivity Meter)</td>
<td>포항산업과학연구원</td>
<td>열전도 시험</td>
<td>18~320deg시료크기:150X150mm</td>
</tr>
<tr>
<td>연</td>
<td>열분석기 (Differential Scanning Calorimetry/Thermo Gravimetric Analyzer)</td>
<td>포항산업과학연구원</td>
<td>열분석</td>
<td>DSC:-150~550 degTGA:700 deg</td>
</tr>
<tr>
<td>연</td>
<td>고온 부식 실험 장치 (High Temperature Corrosion Tester)</td>
<td>포항산업과학연구원</td>
<td>고온 부식 시험</td>
<td>“Max.temp:1200 deg, 220V, 3KW”</td>
</tr>
<tr>
<td>산</td>
<td>염수 분무 시험기 (SALTFOGCABINET)</td>
<td>한국기계연구원</td>
<td>염수 분무 시험</td>
<td>ASTMB117NozzleAirPressure:1025psiVolum eofSaltSprayperhour:12ml/hrChamberTemperaturecontrol:92~97degreeF</td>
</tr>
<tr>
<td>연</td>
<td>열분석기 (Differential Scanning Calorimetry/Thermo Gravimetric Analyzer)</td>
<td>한국기계연구원</td>
<td>열분석</td>
<td>DSC:-150~550 degTGA:700 deg</td>
</tr>
<tr>
<td>연</td>
<td>열팽창 계수 측정기 (High Speed Quenching Dilatometer)</td>
<td>한국기계연구원</td>
<td>열팽창 계수 측정</td>
<td>최대하중:50톤최대가압속도:30mm/min.Stroke:30cm</td>
</tr>
<tr>
<td>연</td>
<td>표면 응력 부식 시험기 (Sulfide Stress Cracking Tester)</td>
<td>한국기계연구원</td>
<td>표면 응력 부식 시험</td>
<td>“황화수소분위기에서내응력부식성시험(stainlesssteel,나 privileging 등외응력부식시험)Dimension:8x6x16”</td>
</tr>
<tr>
<td>구분</td>
<td>시험장비명</td>
<td>기관</td>
<td>용도</td>
<td>Spec.</td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
<td>-----</td>
<td>-----</td>
<td>-------</td>
</tr>
<tr>
<td>산</td>
<td>시차 주사열 분석기 (Differential Scanning Calorimeter)</td>
<td>한국화이바</td>
<td>시차 주사 열분석</td>
<td>"기준물질과 시료를 같은 조건에서 가열하여 시료의 온도와 화학적 변화를 180~725 ℃"</td>
</tr>
<tr>
<td>산</td>
<td>항온 항습기 (Temperature&Humidity Chamber)</td>
<td>한국화이바</td>
<td>항온/항습</td>
<td>"각 종 섬유시료를 위한 표준물질의 전처리 항온항습 온도범위: 20°C ~ 100°C, 습도 범위: 20~98% RH, 온도 조절 방식: 명 항조절방식 (BTHCSyst em)"</td>
</tr>
<tr>
<td>산</td>
<td>고온 시험기 (High temperature Chamber)</td>
<td>한국화이바</td>
<td>최고 130°C 고온성 재료 시험</td>
<td>"최고 130°C 고온 상태에서 시료의, 플라스틱, Composite 등 모든 재료 인장, 압축, 굽기 및 물질의 기계적 특성시험에 이용"</td>
</tr>
<tr>
<td>산</td>
<td>극저온 시험기 (Extremely low temperature Chamber)</td>
<td>한국화이바</td>
<td>최저 -170°C 초저온상 재료시험</td>
<td>"최저 -170°C 초저온상 에시에 시료의, 플라스틱, Composite 등 모든 재료 인장, 압축, 굽기 및 물질의 기계적 특성시험에 이용"</td>
</tr>
<tr>
<td>산</td>
<td>열기계적 분석기 (Thermo mechanical Analyzer)</td>
<td>한국화이바</td>
<td>열팽창 또는 수축과 같은 정적 변형을 측정</td>
<td>"성형제품의 온도에 따른 열팽창 또는 수축과 같은 정적 변형을 측정 150~10 00°C"</td>
</tr>
<tr>
<td>학</td>
<td>반응습도 측정 시스템 (Reaction Humidity Measurement System)</td>
<td>항공대</td>
<td>반응습도 측정</td>
<td></td>
</tr>
<tr>
<td>학</td>
<td>부식 측정기 (Potentiostat/Galvanostat System)</td>
<td>항공대</td>
<td>부식 측정</td>
<td>"전원공급장치, 분체, electrometer, rotating disk electrodesystem 전지, 부식, 도금 등의 전기화학적 시스템에 있어 반응기구의 해석에 이용"</td>
</tr>
<tr>
<td>학</td>
<td>열분석기 (Thermal Analyzer)</td>
<td>항공대</td>
<td>열분석</td>
<td>"DSC-50 temp.range: 상온 ~725°C, TGA-50, DT A-50 temp.range: 상온 ~1500°C (보통 1300°C)"</td>
</tr>
<tr>
<td>구분</td>
<td>시험장비명</td>
<td>기관</td>
<td>용도</td>
<td>Spec.</td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
<td>------</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>학</td>
<td>열전도도 측정기 (Thermal Conductivity Measuring)</td>
<td>항공대</td>
<td>열전도 측정</td>
<td>"온도조절장치데이터분석생표시장치Condition표시장치단말제,보온제,분체,식품등 열전도율측정에이용"</td>
</tr>
<tr>
<td>학</td>
<td>열전도 시험 장치 (Heat Conduction Tester)</td>
<td>항공대</td>
<td>열전도 시험</td>
<td>"비정상열선 thủy을이용한 비속열전도율측정Box형,needleprobe,열선식probe등을사용하여 다양한시험측정ReferencetableandcoolingplateProbel 보정표등"</td>
</tr>
<tr>
<td>학</td>
<td>인화점 측정기 (Flash Point Tester)</td>
<td>항공대</td>
<td>인화점 측정</td>
<td></td>
</tr>
</tbody>
</table>

(9) 회전익기 분야

<table>
<thead>
<tr>
<th>구분</th>
<th>시험장비명</th>
<th>기관</th>
<th>용도</th>
<th>Spec.</th>
</tr>
</thead>
<tbody>
<tr>
<td>연*</td>
<td>축소 로터 회전시험 설비</td>
<td>KARI</td>
<td></td>
<td>45HP급</td>
</tr>
<tr>
<td>연*</td>
<td>주로터 원터워</td>
<td>KARI</td>
<td></td>
<td>높이 9.8m, 최대 2,700 kW</td>
</tr>
<tr>
<td>연*</td>
<td>꼬리로터 원터워</td>
<td>KARI</td>
<td></td>
<td>높이 4.55m, 최대동력 650 KW</td>
</tr>
<tr>
<td>연*</td>
<td>로터 피로시험 설비</td>
<td>KARI</td>
<td></td>
<td>50 Ton급 원심력부가</td>
</tr>
<tr>
<td>연*</td>
<td>착륙장치 낙하시험 설비</td>
<td>KARI</td>
<td></td>
<td>최대낙하속도 11.3m/s, 최대낙하중량 8톤</td>
</tr>
<tr>
<td>구분</td>
<td>시험장비명</td>
<td>기관</td>
<td>용 도</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>------------------------------------</td>
<td>---------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>추가</td>
<td>주기어랙스 시험장비 (Multi-purpose Test Stand)</td>
<td>KAI</td>
<td>웰리콥터 주기어랙스 인증시험 (Lubrication, Chip Detection, Dry-Run, Endurance Test 등), 수락시험 및 Maintenance</td>
<td></td>
</tr>
<tr>
<td>구축 필요</td>
<td>문헌 조사 필요</td>
<td></td>
<td>최대속도 7,000 rpm
최대동력 4000kW</td>
<td></td>
</tr>
</tbody>
</table>

(10) 기타 설비

<table>
<thead>
<tr>
<th>구분</th>
<th>시험장비명</th>
<th>기관</th>
<th>용 도</th>
</tr>
</thead>
<tbody>
<tr>
<td>산</td>
<td>Bond Proof Tester</td>
<td>KAI</td>
<td>T-50 고무 제품 인정시험용</td>
</tr>
<tr>
<td>연</td>
<td>지상 성능 시험동</td>
<td>KARI</td>
<td>체계종합/성능시험동 (72x32x27m)</td>
</tr>
<tr>
<td>산</td>
<td>냉각 공기 공급기 (T-20-6CAS)</td>
<td>LG</td>
<td>개발장비 운도시험</td>
</tr>
<tr>
<td>학</td>
<td>X-ray system</td>
<td>경상대</td>
<td>방사선 측과 비파괴 검사용</td>
</tr>
<tr>
<td>산*</td>
<td>3D Measurement System (CMM)</td>
<td>다큐 프리션</td>
<td>스캐닝 3차원 측정</td>
</tr>
<tr>
<td>산*</td>
<td>3축 모션 시뮬레이터 (IM-P29384)</td>
<td>삼성 태일레스</td>
<td></td>
</tr>
<tr>
<td>연</td>
<td>염분 분무 시험</td>
<td>삼성 태일레스</td>
<td>염수 분무 시험</td>
</tr>
<tr>
<td>연</td>
<td>저압질화 열처리</td>
<td>삼성 기술 연구원</td>
<td>내마모성 질화처리</td>
</tr>
<tr>
<td>연</td>
<td>진공 첨단 열처리 및 복합코팅 처리장치</td>
<td>삼성 기술 연구원</td>
<td>내마모성 표면제질처리</td>
</tr>
<tr>
<td>구분</td>
<td>시험장비명</td>
<td>기관</td>
<td>용도</td>
</tr>
<tr>
<td>------</td>
<td>-----------------</td>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>연</td>
<td>AIP(Arc Ion Plating)</td>
<td>생산기술연구원</td>
<td>표면 개질층 형성/플라즈마코팅</td>
</tr>
<tr>
<td>산</td>
<td>경사시험용</td>
<td>엠텍</td>
<td>경사시험</td>
</tr>
<tr>
<td>산</td>
<td>가공작업실</td>
<td>오리엔탈</td>
<td>복합재료 부품성형</td>
</tr>
<tr>
<td>산</td>
<td>대형냉동고</td>
<td>오리엔탈</td>
<td>원자재 제품 냉동보관</td>
</tr>
<tr>
<td>산</td>
<td>대형오븐기</td>
<td>오리엔탈</td>
<td>제품/금형 건조용</td>
</tr>
<tr>
<td>산</td>
<td>대형오토플레이브</td>
<td>오리엔탈</td>
<td>복합재료 부품성형</td>
</tr>
<tr>
<td>산</td>
<td>도장작업실</td>
<td>오리엔탈</td>
<td>복합재료 부품도장</td>
</tr>
<tr>
<td>산</td>
<td>소형오븐기</td>
<td>오리엔탈</td>
<td>제품/금형 건조용</td>
</tr>
<tr>
<td>산</td>
<td>소형오토프레임</td>
<td>오리엔탈</td>
<td>복합재료 부품성형</td>
</tr>
<tr>
<td>산</td>
<td>열상형기</td>
<td>오리엔탈</td>
<td>ABS 계열 수지 시트 제품성형</td>
</tr>
<tr>
<td>산</td>
<td>저온냉장고</td>
<td>오리엔탈</td>
<td>저온저장기능</td>
</tr>
<tr>
<td>산</td>
<td>고기세척장</td>
<td>오리엔탈</td>
<td>알루미늄 허니콤 고기세척기능</td>
</tr>
<tr>
<td>산</td>
<td>Furne Hood</td>
<td>오리엔탈</td>
<td>화학시험용</td>
</tr>
<tr>
<td>산</td>
<td>X-ray 살비</td>
<td>요업기술원</td>
<td>복합재료 내부 결함검출</td>
</tr>
<tr>
<td>연</td>
<td>가속열충격시험조</td>
<td>요업기술원</td>
<td>시료에 열충격을 인가 고장 가속시험</td>
</tr>
<tr>
<td>산</td>
<td>Autoclave</td>
<td>위아</td>
<td>복합재료 실험장비</td>
</tr>
<tr>
<td>구분</td>
<td>시험장비명</td>
<td>기관</td>
<td>용도</td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>산</td>
<td>Hot Press</td>
<td>위아</td>
<td>고성능 복합재 성형 제작</td>
</tr>
<tr>
<td>연</td>
<td>임분 분무 시험</td>
<td>전기연구원</td>
<td>임수 분무 시험</td>
</tr>
<tr>
<td>산</td>
<td>400Hz Generator(32-043)</td>
<td>퍼스텍</td>
<td>주파수 변환</td>
</tr>
<tr>
<td>산</td>
<td>검증압 시험장비</td>
<td>퍼스텍</td>
<td>압력시험용</td>
</tr>
<tr>
<td>산</td>
<td>부스타 (충압)</td>
<td>퍼스텍</td>
<td>압력 촉진</td>
</tr>
<tr>
<td>산</td>
<td>천마작동기 조립체 시험셋</td>
<td>퍼스텍</td>
<td>천마작동기 조립체 상동시험</td>
</tr>
<tr>
<td>산</td>
<td>F/AWG (33120A)</td>
<td>퍼스텍</td>
<td>함수발생기</td>
</tr>
<tr>
<td>산</td>
<td>Laser Wire Marking</td>
<td>퍼스텍</td>
<td>Wire 괴목에 배선 번호 마킹</td>
</tr>
<tr>
<td>산</td>
<td>Wire 하네스 제작 Tool Set</td>
<td>퍼스텍</td>
<td>항공기 배선 제작</td>
</tr>
<tr>
<td>산</td>
<td>Wire 하네스 Test Sys. (WTS)</td>
<td>퍼스텍</td>
<td>배선도통/절연검사</td>
</tr>
<tr>
<td>연</td>
<td>고속 다이어몬드 절단 장치</td>
<td>포항산업과학연구원</td>
<td>용사코팅시편 미세절단</td>
</tr>
<tr>
<td>연</td>
<td>광전자 분광 분석기(ESCA)</td>
<td>포항산업과학연구원</td>
<td>화학적 결합태 분석</td>
</tr>
<tr>
<td>연</td>
<td>방사광 XRD/EXAFS 맴라인</td>
<td>포항산업과학연구원</td>
<td>표면 및 계층면의 구조분석 및 잔류 응력 측정</td>
</tr>
<tr>
<td>연</td>
<td>멜치형 자본 탐상기</td>
<td>포항산업과학연구원</td>
<td>표면/내부 결합 탐성</td>
</tr>
<tr>
<td>구분</td>
<td>시험장비명</td>
<td>기관</td>
<td>용도</td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>연</td>
<td>분말 공급 장치</td>
<td>포항산업과학연구원</td>
<td>용사코팅, 미세분말공급</td>
</tr>
<tr>
<td>연</td>
<td>오제 전자 현미경</td>
<td>포항산업과학연구원</td>
<td>표면처리 강판등 표면/계면 및 값이 분석</td>
</tr>
<tr>
<td>연</td>
<td>와류 탐상기</td>
<td>포항산업과학연구원</td>
<td>피로도 및 경화층평가</td>
</tr>
<tr>
<td>연</td>
<td>용사 코팅용 연마 장치</td>
<td>포항산업과학연구원</td>
<td>시편의 gridding 및 polishing</td>
</tr>
<tr>
<td>연</td>
<td>용사 코팅 특성 장치</td>
<td>포항산업과학연구원</td>
<td>용사코팅 온도입사크기 실시간측정</td>
</tr>
<tr>
<td>연</td>
<td>이차이온 절연 분석기 (SIMS)</td>
<td>포항산업과학연구원</td>
<td>미소원소측정, 재료특성분석</td>
</tr>
<tr>
<td>연</td>
<td>집합 조직측정 전용XRD</td>
<td>포항산업과학연구원</td>
<td>Texture 및 Pole Figure측정</td>
</tr>
<tr>
<td>연</td>
<td>초고속 용사 코팅 장비 (JP-5000시스템)</td>
<td>포항산업과학연구원</td>
<td>시맷분말 및 금발분산의 용사코팅</td>
</tr>
<tr>
<td>연</td>
<td>초음파 결함 탐상기</td>
<td>포항산업과학연구원</td>
<td>입도, 피로도 및 경화층평가</td>
</tr>
<tr>
<td>연</td>
<td>초음파 펄시 리시버</td>
<td>포항산업과학연구원</td>
<td>입도, 피로도 및 경화층평가</td>
</tr>
<tr>
<td>구분</td>
<td>시험장비명</td>
<td>기관</td>
<td>용도</td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>연</td>
<td>폭발 용사 코팅 장비</td>
<td>포항 산업 과학 연구원</td>
<td>금속 분말 및 시멘트분말의 용사코팅</td>
</tr>
<tr>
<td>연</td>
<td>표면 조도기</td>
<td>포항 산업 과학 연구원</td>
<td>용사 코팅 표면의 조도 측정</td>
</tr>
<tr>
<td>연</td>
<td>플라즈마 용시코팅장비</td>
<td>포항 산업 과학 연구원</td>
<td>세라믹 분말 용사코팅</td>
</tr>
<tr>
<td>연</td>
<td>Attrition Mil</td>
<td>포항 산업 과학 연구원</td>
<td>금속/세라믹 합금화 분말 제조</td>
</tr>
<tr>
<td>연</td>
<td>Coating Adherence Tester</td>
<td>포항 산업 과학 연구원</td>
<td>용사 코팅층의 밀착력 시험</td>
</tr>
<tr>
<td>연</td>
<td>EPMA</td>
<td>포항 산업 과학 연구원</td>
<td>표면 형상 관찰, 미소부 정량 정성 분석</td>
</tr>
<tr>
<td>연</td>
<td>FE-TEM</td>
<td>포항 산업 과학 연구원</td>
<td>고분해능 이미지 관찰 및 성분분석</td>
</tr>
<tr>
<td>연</td>
<td>Glow Discharge Lamp Spectrometer (GDS)</td>
<td>포항 산업 과학 연구원</td>
<td>강판의 도금층 및 산화층 갑이 방향 분석</td>
</tr>
<tr>
<td>연</td>
<td>High Resolution GC-MS</td>
<td>포항 산업 과학 연구원</td>
<td>유기 복합 재료의 구조 및 상태 분석</td>
</tr>
<tr>
<td>연</td>
<td>High Velocity Ceramic Coating M/C</td>
<td>포항 산업 과학 연구원</td>
<td>금속/시어링의 용사 코팅</td>
</tr>
<tr>
<td>구분</td>
<td>시험장비명</td>
<td>기관</td>
<td>용도</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
<td>--------------------------</td>
<td>--</td>
</tr>
<tr>
<td>연</td>
<td>ICP-MS</td>
<td>포항산업과학연구원</td>
<td>금속, 반도체 등 극미량 원소 동시 분석</td>
</tr>
<tr>
<td>연</td>
<td>Simultaneous XRF</td>
<td>포항산업과학연구원</td>
<td>금속, 복합 재료 등의 원소 분석</td>
</tr>
<tr>
<td>연</td>
<td>3차원 측정기</td>
<td>표준과학연</td>
<td>기계 부품 차수 측정</td>
</tr>
<tr>
<td>연</td>
<td>가상 현실 기화장비</td>
<td>표준과학연</td>
<td>헬기 초대형 수치 데이터의 3차원 기화</td>
</tr>
<tr>
<td>연</td>
<td>슈퍼컴퓨터</td>
<td>표준과학연</td>
<td>과학기술 계산 및 산업기술 개발</td>
</tr>
<tr>
<td>연</td>
<td>진원도 측정기</td>
<td>표준과학연</td>
<td>구원 등의 진원도 측정</td>
</tr>
<tr>
<td>연</td>
<td>Roughness Tester</td>
<td>표준과학연</td>
<td>기공 부품 표면 거칠기 시험</td>
</tr>
<tr>
<td>연</td>
<td>고온 DSC 열분석장비</td>
<td>한국기계연구원</td>
<td>초내열 합금 열용량 및 열역학 운도측정</td>
</tr>
<tr>
<td>연</td>
<td>마찰 마모 시험기</td>
<td>한국기계연구원</td>
<td>베어링등 마찰 마모 시험</td>
</tr>
<tr>
<td>연</td>
<td>비례 제어 밸브 수명 평가 장비</td>
<td>한국기계연구원</td>
<td>유압작동기름 밸브 수명시험</td>
</tr>
<tr>
<td>연</td>
<td>비선형 초음과 탐상기</td>
<td>한국기계연구원</td>
<td>금속소재 미세 조직 변화의 비과과성 예측</td>
</tr>
<tr>
<td>구분</td>
<td>시험장비명</td>
<td>기관</td>
<td>용도</td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>연</td>
<td>소형 스프링 성능 측정기</td>
<td>한국 기계 연구원</td>
<td>스프링 내장, 압축 특성 측정 (50N)</td>
</tr>
<tr>
<td>연</td>
<td>입문 분무 시험</td>
<td>한국 기계 연구원</td>
<td>압수 분무 시험</td>
</tr>
<tr>
<td>연</td>
<td>전기 전도도 측정기</td>
<td>한국 기계 연구원</td>
<td>금속, 합금에 대한 전기 전도도 측정</td>
</tr>
<tr>
<td>연</td>
<td>주축 유니트 수명 평가장비</td>
<td>한국 기계 연구원</td>
<td>유압 작동기용 실험, 수명 시험</td>
</tr>
<tr>
<td>연</td>
<td>중형 스프링 성능 측정기</td>
<td>한국 기계 연구원</td>
<td>스프링 인장, 압축 특성 측정 (2000N)</td>
</tr>
<tr>
<td>연</td>
<td>진공아크 재용해로</td>
<td>한국 기계 연구원</td>
<td>소형 시판 용해</td>
</tr>
<tr>
<td>연</td>
<td>진공 용해 주조로</td>
<td>한국 기계 연구원</td>
<td>다결정 정밀주조</td>
</tr>
<tr>
<td>연</td>
<td>초고속 회전 기계 빌런싱 설비</td>
<td>한국 기계 연구원</td>
<td>회전체 빌런싱, 배어링, 시험 등 시험</td>
</tr>
<tr>
<td>연</td>
<td>초음파 출력 측정 시스템</td>
<td>한국 기계 연구원</td>
<td>부품 수명시험</td>
</tr>
<tr>
<td>연</td>
<td>초정밀 빌런싱 머신</td>
<td>한국 기계 연구원</td>
<td>소형, 정밀 회전체에 대한 정밀 빌런싱</td>
</tr>
<tr>
<td>연</td>
<td>캐립 시험기 시스템</td>
<td>한국 기계 연구원</td>
<td>고온 재료 캐립 시험</td>
</tr>
<tr>
<td>연</td>
<td>호스 수명 평가 장비</td>
<td>한국 기계 연구원</td>
<td>호스 조립체 수명시험 (70MPa)</td>
</tr>
<tr>
<td>구분</td>
<td>시험장비명</td>
<td>기관</td>
<td>용도</td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>연</td>
<td>ALDDS/SX 진공 용해로</td>
<td>한국 기계 연구원</td>
<td>엔진 핵심 부품 일반항 응고</td>
</tr>
<tr>
<td>연</td>
<td>Industrial Videscope</td>
<td>한국 기계 연구원</td>
<td>접근이 어려운 구조물/부품의 내면 육안 검사</td>
</tr>
<tr>
<td>연</td>
<td>Magnetic Flow Detector</td>
<td>한국 기계 연구원</td>
<td>표면, 표면하의 불연속 탐지</td>
</tr>
<tr>
<td>연</td>
<td>Microfocus X-ray Sys.</td>
<td>한국 기계 연구원</td>
<td></td>
</tr>
<tr>
<td>연</td>
<td>Pro Cast</td>
<td>한국 기계 연구원</td>
<td>핵심 부품 정밀 주조 컴퓨터 시뮬레이션</td>
</tr>
<tr>
<td>연</td>
<td>Seal/Packet 수명 평가 장비</td>
<td>한국 기계 연구원</td>
<td>설, 패킹 수명 시험 (압력 250bar)</td>
</tr>
<tr>
<td>연</td>
<td>Wide Band Power Analyzer</td>
<td>한국 기계 연구원</td>
<td>시험장비 과열분석</td>
</tr>
<tr>
<td>산</td>
<td>복합재료 분석 장비</td>
<td>한국 화이바</td>
<td>물리적 화학적분석</td>
</tr>
<tr>
<td>산</td>
<td>데이터 획득 장비</td>
<td>한국 화이바</td>
<td>운도, 압력, 변형율 등 시험 획득</td>
</tr>
<tr>
<td>산</td>
<td>C–Scan 설비</td>
<td>한국 화이바</td>
<td>복합재료 내부 결함검출</td>
</tr>
<tr>
<td>산</td>
<td>Rheometer</td>
<td>한국 화이바</td>
<td>점착성물질 경화 거동측정</td>
</tr>
<tr>
<td>산</td>
<td>X-Ray 설비</td>
<td>한국 화이바</td>
<td>복합재료 내부 결함검출</td>
</tr>
<tr>
<td>연</td>
<td>3차원 측정기</td>
<td>한국 화이바</td>
<td>기계부품 차수측정</td>
</tr>
<tr>
<td>산</td>
<td>Electro Etching Device</td>
<td>한화</td>
<td>전해마킹용 장비</td>
</tr>
<tr>
<td>구분</td>
<td>시험장비명</td>
<td>기관</td>
<td>용 도</td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>산</td>
<td>Freezer</td>
<td>한화</td>
<td>항공 부품 일반용용</td>
</tr>
</tbody>
</table>

(11) 복합재 Qualification 시험장비 보유현황 (한국항공우주산업주식회사)
: 시험방법: MIL-HDBK-17-1F 기준

(가) 복합재 Fiber 물성평가 시험

<table>
<thead>
<tr>
<th>구분</th>
<th>시험 항목</th>
<th>시험 방법</th>
<th>보유 현황</th>
<th>비고</th>
</tr>
</thead>
</table>
| 물리적 특성 | Tow Tensile Test | ASTM D4018 | △ | 현재 국내 장비로 시험 가능할 것으로 판단되나 적응 하중값이 특정 크기(TBD)를 초과하는 경우 신규 확보 필요
- 현 보유장비로 시험가능한 하중값 및 복합재 DB과제 관련 선정된 Fiber에 적응하여야 하는 실제 하중값은 추가 확인 중 |

- Tow : Fiber 묶음 상태를 의미

(나) Uncured Prepreg의 Physical/Chemical Properties에 대한 Screening Test

<table>
<thead>
<tr>
<th>구분</th>
<th>시험 항목</th>
<th>시험 방법</th>
<th>보유 현황</th>
<th>비고</th>
</tr>
</thead>
</table>
| 물리적 특성 | Tack | 검토 중 | X | Prepreg 제작사에서 정하는 시험결과에 따라 장비 필요
이부가 최종 결정됨. |
| | Drape | 검토 중 | X | Prepreg 제작사에서 정하는 시험결과에 따라 장비 필요
이부가 최종 결정됨. |
| | Resin Content | ASTM D3529, C613, D5300; SACMA RM23, RM24 | O | |
| 기계적 특성 | 성분 |ASTM/D3530/ASTM D3531; SACMA RM22/ASTM D3532; SACMA RM19/ASTM D3776; SACMA RM23, RM24| O
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tack</td>
<td>Resin Flow</td>
<td>ASTM D3530</td>
</tr>
<tr>
<td>Gel Time</td>
<td>ASTM D3532; SACMA RM19</td>
<td></td>
</tr>
<tr>
<td>Fiber Areal Weight</td>
<td>ASTM D3776; SACMA RM23, RM24</td>
<td></td>
</tr>
<tr>
<td>HPLC</td>
<td>SACMA RM20</td>
<td></td>
</tr>
<tr>
<td>FT-IR</td>
<td>ASTM E1252, E168</td>
<td></td>
</tr>
</tbody>
</table>

용어 정의
- **Tack**
 - 프리프레그가 구성품/부품 제작에 적절한지 결정하기 위한 요소로서, 프리프레그가 다른 재료 표면에 잘 붙는지를 나타내는 정도임.
 - 일반적으로 승인된 정량적인 Tack 측정방법은 없으나, 일부 복합재 제조업체에서는 Monsanto Tack Tester를 이용하여 프리프레그 Tack에 대한 상대지수를 구함.
- **Drape**
 - 복합재 표면을 제작하는 데에 프리프레그가 얼마나 상형성이 좋은지를 나타내는 주관적인 척도.
 - 현재까지 알아본 바로는 표준화된 시험방법은 없으나 재료공급자(Material Supplier)마다 자체 시험방법에 따라 측정하고 있음.
- **SACMA** : Suppliers of Advanced Composite Material Association
- **DSC** (Differential Scanning Calorimetry)
 - 프리프레그의 유리전이온도 (Glass Transition Temp., Tg)를 구하는 시험.
- DMA(Cured Lamina의 Tg 측정방법)가 기계적 성질을 측정하여 Tg를 구하는 것과 달리, DSC는 Heat Flow와 같은 열역학적 성질을 측정함으로써 Tg를 구함.
- RDS (Rheometrics Dynamic Spectrometry)
 - 일정한 전단하중 조건 하에서 온도에 따른 점도를 측정함으로써 Resin의 유동 특성(경화 거동 특성)을 파악하기 위한 시험.
- HPLC (High Performance Liquid Chromatography)
 - 혼합물의 성분물질을 정량적으로 분석하는 시험.
- FT-IR (Fourier Transform Infrared Spectroscopy)
 - 시료에 적외선을 흡수시키거나 투과시키시 정성적으로 혹은 정량적으로 분자구조 및 분자 결합에 관한 기본적인 정보를 얻는 시험.

(다) Fluid Sensitivity Screening Test (Group I and II)

<table>
<thead>
<tr>
<th>구분</th>
<th>시험 항목</th>
<th>시험 방법</th>
<th>보유 현황</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>물리적 특성</td>
<td>• Weight Change</td>
<td></td>
<td>O</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Photomicrographs (microcracks)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Scanning Electron Microscopy (surface crazing)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>기계적 특성</td>
<td>• Open Hole Compression test and ±45° Tension test; or Interlaminar or Short Beam Shear tests</td>
<td></td>
<td>O</td>
<td></td>
</tr>
</tbody>
</table>

• Group I Fluids (일정 기간 복합재와 접촉):
 - Hydraulic Fluid [MIL-H-5606]
 - Hydraulic Fluid [MIL-H-83282]
 - PAO (Poly Alphaolefin) Cooling Fluid [MIL-C-87252]
 - Engine Lubricating Oil [MIL-L-7808]
 - Engine Lubricating Oil [MIL-L-23699]
 - Ethylene Glycol/Urea Deicer (Class I) [SAE AMS 1432]
- Sump Water [MIL-S-8802]
- Methylene Chloride [ASTM D4701]
- SO2/Salt Spray

- **Group II Fluids** (일정 기간 복합재와 미접촉):
 - Alkaline Cleaner (Types 1 and 2) [MIL-C-87936]
 - MEK Washing Liquid [ASTM D740]
 - Dry Cleaning Solvent (Type 2) [P-D-680]
 - Hydrocarbon Washing Liquid [TT-S-735]
 - Polypropylene Glycol Deicer (Type 1) [MIL-A-8243]
 - Isopropyl Alcohol Deicing Agent [TT-I-735]

- **KC-100에 적용된 Fluid**
 - De-icing Fluid [DTD 406B]
 - AVGas 100LL [ASTM D910]
 - Hydraulic Fluid [MIL-PRF-83282]

(라) Cured Lamina의 Physical Properties에 대한 Test

<table>
<thead>
<tr>
<th>구분</th>
<th>시험 항목</th>
<th>시험 방법</th>
<th>보유 현황</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>물리적 특성</td>
<td>Fiber Volume</td>
<td>ASTM D3171, D2734; SACMA RM10</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Resin Volume</td>
<td>ASTM D3171, D2734; SACMA RM10</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Density</td>
<td>ASTM D2584</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cured Ply Thickness</td>
<td>ASTM D792, D1505</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tg(dry)</td>
<td>SACMA RM10</td>
<td>O</td>
<td>DMA 방법 이용</td>
</tr>
<tr>
<td></td>
<td>Tg(wet)</td>
<td>ASTM D4065; SACMA RM18</td>
<td>O</td>
<td>DMA 방법 이용</td>
</tr>
</tbody>
</table>
(라) Cured Lamina의 Mechanical Properties에 대한 Test

<table>
<thead>
<tr>
<th>구분</th>
<th>시험 항목</th>
<th>시험 방법</th>
<th>보유 현황</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>기계적 특성</td>
<td>0° Tensile Modulus, Strength and Poisson’s Ratio</td>
<td>ASTM D3039; SACMA RM4, RM9</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td></td>
<td>90° Tensile Modulus and Strength</td>
<td>ASTM D3039, D5450; SACMA RM4, RM9</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0° Compressive Modulus and Strength</td>
<td>ASTM D3410, D5467; SACMA RM1, RM6</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td></td>
<td>90° Compressive Modulus and Strength</td>
<td>ASTM D3410, D5449; SACMA RM1, RM6</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td></td>
<td>In-Plane Shear Modulus and Strength</td>
<td>ASTM D3518, D5448, D5379; SACMA RM7</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Short Beam Shear</td>
<td>ASTM D2344; SACMA RM8</td>
<td>O</td>
<td></td>
</tr>
</tbody>
</table>

(마) Laminate의 Mechanical Properties에 대한 Test

<table>
<thead>
<tr>
<th>구분</th>
<th>(0°/±45°/90°) Test Type</th>
<th>Layup</th>
<th>시험 방법</th>
<th>보유 현황</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>기계적 특성</td>
<td>(25/50/25–QI) OHT1</td>
<td>[45/0/–45/90]2S</td>
<td>ASTM D5766</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(10/80/10) OHT2</td>
<td>[45/–45/0/45/–45/90/45/–45/45/–45]s</td>
<td>ASTM D5766</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(50/40/10) OHT3</td>
<td>[0/45/0/90/0/–45/0/45/0/–45]s</td>
<td>ASTM D5766</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(25/50/25–QI) FHT1</td>
<td>[45/0/–45/90]2s</td>
<td>ASTM D6742</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(10/80/10) FHT2</td>
<td>[45/–45/0/45/–45/90/45/–45/45/–45]s</td>
<td>ASTM D6742</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(50/40/10) FHT3</td>
<td>[0/45/0/90/0/–45/0/45/0/–45]s</td>
<td>ASTM D6742</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(25/50/25–QI) OHCh1</td>
<td>[45/0/–45/90]4s</td>
<td>ASTM D6484</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ASTM D6484</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>----------------</td>
<td>------------------</td>
<td>------------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>(10/80/10) OHC2</td>
<td>[45/-45/0/45/-45/90/45/-45/45/-45]2s</td>
<td></td>
<td>ASTM D6484</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>(50/40/10) OHC3</td>
<td>[0/45/0/90/0/-45/0/45/0/-45]2s</td>
<td></td>
<td>ASTM D6484</td>
<td>O</td>
<td></td>
</tr>
</tbody>
</table>

* OHT : Open Hole Tension
* FHT : Filled Hole Tension
* OHC : Open Hole Compression
부록 2. 소형 비행기 기술기준 무인항공기 적용성 검토

<table>
<thead>
<tr>
<th>Part 23</th>
<th>무인항공기 적용성</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subpart A. General</td>
<td></td>
</tr>
<tr>
<td>§ 23.1 Applicability.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 23.2 Special retroactive requirements.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 23.3 Airplane categories.</td>
<td>미적용</td>
</tr>
<tr>
<td>Subpart B. Flight</td>
<td></td>
</tr>
<tr>
<td>General</td>
<td></td>
</tr>
<tr>
<td>§ 23.21 Proof of compliance.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>§ 23.23 Load distribution limits.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 23.25 Weight limits.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 23.29 Empty weight and corresponding center of gravity.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 23.31 Removable ballast.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 23.33 Propeller speed and pitch limits.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>Performance</td>
<td></td>
</tr>
<tr>
<td>§ 23.45 General.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 23.49 Stalling speed.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 23.51 Takeoff speeds.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 23.53 Takeoff performance.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 23.55 Accelerate-stop distance.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 23.57 Takeoff path.</td>
<td>미적용</td>
</tr>
<tr>
<td>§ 23.59 Takeoff distance and takeoff run.</td>
<td>미적용</td>
</tr>
<tr>
<td>§ 23.61 Takeoff flight path.</td>
<td>미적용</td>
</tr>
<tr>
<td>§ 23.63 Climb: General.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 23.65 Climb: All engines operating.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 23.66 Takeoff climb: One-engine inoperative.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>§ 23.67 Climb: One engine inoperative.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 23.69 Enroute climb/descent.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>§ 23.71 Glide: Single-airplanes.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>§ 23.73 Reference landing approach speed.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 23.75 Landing distance.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>Part 23</td>
<td>무인항공기 적용성</td>
</tr>
<tr>
<td>---</td>
<td>------------------</td>
</tr>
<tr>
<td>§ 23.77 Balked landing.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>Flight Characteristics</td>
<td></td>
</tr>
<tr>
<td>§ 23.141 General</td>
<td>요건 수정</td>
</tr>
<tr>
<td>Controllability and Maneuverability</td>
<td></td>
</tr>
<tr>
<td>§ 23.143 General</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 23.145 Longitudinal control.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 23.147 Directional and lateral control.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 23.149 Minimum control speed.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 23.151 Acrobatic maneuvers.</td>
<td>미적용</td>
</tr>
<tr>
<td>§ 23.153 Control during landings.</td>
<td>미적용</td>
</tr>
<tr>
<td>§ 23.155 Elevator control force in maneuvers.</td>
<td>미적용</td>
</tr>
<tr>
<td>§ 23.157 Rate of roll.</td>
<td>미적용</td>
</tr>
<tr>
<td>Trim</td>
<td></td>
</tr>
<tr>
<td>§ 23.161 Trim</td>
<td>요건 수정</td>
</tr>
<tr>
<td>Stability</td>
<td></td>
</tr>
<tr>
<td>§ 23.171 General</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 23.173 Static longitudinal stability.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 23.175 Demonstration of static longitudinal stability.</td>
<td>미적용</td>
</tr>
<tr>
<td>§ 23.177 Static directional and lateral stability.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 23.181 Dynamic stability.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>Stalls</td>
<td></td>
</tr>
<tr>
<td>§ 23.201 Wings level stall.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 23.203 Turning flight and accelerated turning stalls.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 23.207 Stall warning.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>Spinning</td>
<td></td>
</tr>
<tr>
<td>§ 23.221 Spinning.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>Ground and Water Handling Characteristics</td>
<td></td>
</tr>
<tr>
<td>§ 23.231 Longitudinal stability and control.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>§ 23.233 Directional stability and control.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 23.235 Operation on unpaved surfaces.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 23.237 Operation on water.</td>
<td>미적용</td>
</tr>
<tr>
<td>Part 23</td>
<td>무인항공기 적용성</td>
</tr>
<tr>
<td>--</td>
<td>------------------</td>
</tr>
<tr>
<td>§ 23.239 Spray characteristics.</td>
<td>미적용</td>
</tr>
<tr>
<td>Miscellaneous Flight Requirements</td>
<td></td>
</tr>
<tr>
<td>§ 23.251 Vibration and buffeting.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 23.253 High speed characteristics.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 23.255 Out of trim characteristics.</td>
<td>미적용</td>
</tr>
<tr>
<td>Subpart C. Structure</td>
<td></td>
</tr>
<tr>
<td>General</td>
<td></td>
</tr>
<tr>
<td>§ 23.301 Loads.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 23.302 Canard or tandem wing configurations.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>§ 23.303 Factor of safety.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 23.305 Strength and deformation.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>§ 23.307 Proof of structure.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>Flight Loads</td>
<td></td>
</tr>
<tr>
<td>§ 23.321 General.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 23.331 Symmetrical flight conditions.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>§ 23.333 Flight envelope.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 23.335 Design airspeeds.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 23.337 Limit maneuvering load factors.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 23.341 Gust loads factors.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>§ 23.343 Design fuel loads.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 23.345 High lift devices.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>§ 23.347 Unsymmetrical flight conditions.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>§ 23.349 Rolling conditions.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>§ 23.351 Yawing conditions.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>§ 23.361 Engine torque.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>§ 23.363 Side load on engine mount.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>§ 23.365 Pressurized cabin loads.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>§ 23.367 Unsymmetrical loads due to engine failure.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 23.369 Rear lift truss.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>§ 23.371 Gyroscopic and aerodynamic loads.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 23.373 Speed control devices.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>Part 23</td>
<td>무인항공기 적용성</td>
</tr>
<tr>
<td>---------</td>
<td>------------------</td>
</tr>
<tr>
<td>Control Surface and System Loads</td>
<td></td>
</tr>
<tr>
<td>§ 23.391 Control surface loads.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 23.393 Loads parallel to hinge line.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>§ 23.395 Control system loads.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 23.397 Limit control forces and torques.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 23.399 Dual control system.</td>
<td>미적용</td>
</tr>
<tr>
<td>§ 23.405 Secondary control system.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 23.407 Trim tab effects.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 23.409 Tabs.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>§ 23.415 Ground gust conditions.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>Horizontal Stabilizing and Balancing Surfaces</td>
<td></td>
</tr>
<tr>
<td>§ 23.421 Balancing loads.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>§ 23.423 Maneuvering loads.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>§ 23.425 Gust loads.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>§ 23.427 Unsymmetrical loads.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>Vertical Surfaces</td>
<td></td>
</tr>
<tr>
<td>§ 23.441 Maneuvering loads.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 23.443 Gust loads.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 23.445 Outboard fins or winglets.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>Ailerons and Special Devices</td>
<td></td>
</tr>
<tr>
<td>§ 23.455 Ailerons.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>§ 23.459 Special devices.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>Ground Loads</td>
<td></td>
</tr>
<tr>
<td>§ 23.471 General.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 23.473 Ground load conditions and assumptions.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 23.477 Landing gear arrangement.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>§ 23.479 Level landing conditions.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>§ 23.481 Tail down landing conditions.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>§ 23.483 One-wheel landing conditions.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>§ 23.485 Side load conditions.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 23.493 Braked roll conditions.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>Part 23</td>
<td>Supplementary conditions for tail wheels.</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>§ 23.497</td>
<td>동일요건 적용</td>
</tr>
</tbody>
</table>

Water Loads

§ 23.521	Water load conditions.	미적용
§ 23.523	Design weights and center of gravity positions.	미적용
§ 23.525	Application of loads.	미적용
§ 23.527	Hull and main float load factors.	미적용
§ 23.529	Hull and main float landing conditions.	미적용
§ 23.531	Hull and main float takeoff condition.	미적용
§ 23.533	Hull and main float bottom pressures.	미적용
§ 23.535	Auxiliary float loads.	미적용
§ 23.537	Seawing loads.	미적용

Emergency Landing Conditions

| § 23.561 | General. | 미적용 |
| § 23.562 | Emergency landing dynamic conditions. | 미적용 |

Fatigue Evaluation

§ 23.571	Metallic pressurized cabin structures.	미적용
§ 23.572	Metallic wing, empennage, and associated structures.	동일요건 적용
§ 23.573	Damage tolerance and fatigue evaluation of structure.	동일요건 적용
§ 23.574	Metallic damage tolerance and fatigue evaluation of commuter category airplanes.	미적용
§ 23.575	Inspections and other procedures.	동일요건 적용

Subpart D. Design And Construction

<p>| § 23.601 | General. | 동일요건 적용 |
| § 23.603 | Materials and workmanship. | 동일요건 적용 |
| § 23.605 | Fabrication methods. | 동일요건 적용 |</p>
<table>
<thead>
<tr>
<th>Part 23</th>
<th>무인항공기 적용성</th>
</tr>
</thead>
<tbody>
<tr>
<td>§ 23.607 Fasteners.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>§ 23.609 Protection of structure.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>§ 23.611 Accessibility provisions.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>§ 23.613 Material strength properties and design values.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 23.619 Special factors.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>§ 23.621 Casting factors.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>§ 23.623 Bearing factors.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>§ 23.625 Fitting factors.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 23.627 Fatigue strength.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>§ 23.629 Flutter.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>Wings</td>
<td></td>
</tr>
<tr>
<td>§ 23.641 Proof of strength</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>Control Surfaces</td>
<td></td>
</tr>
<tr>
<td>§ 23.651 Proof of strength</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 23.655 Installation.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>§ 23.657 Hinges.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>§ 23.659 Mass balance.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>Control Systems</td>
<td></td>
</tr>
<tr>
<td>§ 23.671 General.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 23.672 Stability augmentation and automatic and power-operated systems.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 23.673 Primary flight controls.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 23.675 Stops.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 23.677 Trim systems.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 23.679 Control system locks.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 23.681 Limit load static tests.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>§ 23.683 Operation tests.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 23.685 Control system details.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>§ 23.687 Spring devices.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>§ 23.689 Cable systems.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>§ 23.691 Artificial stall barrier system.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 23.693 Joints.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>Part 23</td>
<td>무인항공기 적용성</td>
</tr>
<tr>
<td>---------</td>
<td>------------------</td>
</tr>
<tr>
<td>§ 23.697 Wing flap controls.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 23.699 Wing flap position indicator.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 23.701 Flap interconnection.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>§ 23.703 Takeoff warning system.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>Landing Gear</td>
<td></td>
</tr>
<tr>
<td>§ 23.721 General.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>§ 23.723 Shock absorption tests.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>§ 23.725 Limit drop tests.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>§ 23.726 Ground load dynamic tests.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>§ 23.727 Reserve energy absorption drop test.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>§ 23.729 Landing gear extension and retraction system.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>§ 23.731 Wheels.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>§ 23.733 Tires.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>§ 23.735 Brakes.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>§ 23.737 Skis.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>§ 23.745 Nose/tail wheel steering.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>Floats and Hulls</td>
<td></td>
</tr>
<tr>
<td>§ 23.751 Main float buoyancy.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 23.753 Main float design.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 23.755 Hulls.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 23.757 Auxiliary floats.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>Personnel and Cargo Accommodations</td>
<td></td>
</tr>
<tr>
<td>§ 23.771 Pilot compartment.</td>
<td>미적용</td>
</tr>
<tr>
<td>§ 23.773 Pilot compartment view.</td>
<td>미적용</td>
</tr>
<tr>
<td>§ 23.775 Windshields and windows.</td>
<td>미적용</td>
</tr>
<tr>
<td>§ 23.777 Cockpit controls.</td>
<td>미적용</td>
</tr>
<tr>
<td>§ 23.779 Motion and effect of cockpit controls.</td>
<td>미적용</td>
</tr>
<tr>
<td>§ 23.781 Cockpit control knob shape.</td>
<td>미적용</td>
</tr>
<tr>
<td>§ 23.783 Doors.</td>
<td>미적용</td>
</tr>
<tr>
<td>§ 23.785 Seats, berths, litters, safety belts, and shoulder harnesses.</td>
<td>미적용</td>
</tr>
<tr>
<td>§ 23.787 Baggage and cargo compartments.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>Part 23</td>
<td>무인항공기 적용성</td>
</tr>
<tr>
<td>---------</td>
<td>------------------</td>
</tr>
<tr>
<td>§ 23.791</td>
<td>Passenger information signs.</td>
</tr>
<tr>
<td>§ 23.803</td>
<td>Emergency evacuation.</td>
</tr>
<tr>
<td>§ 23.805</td>
<td>Flightcrew emergency exits.</td>
</tr>
<tr>
<td>§ 23.807</td>
<td>Emergency exits.</td>
</tr>
<tr>
<td>§ 23.811</td>
<td>Emergency exit marking.</td>
</tr>
<tr>
<td>§ 23.812</td>
<td>Emergency lighting.</td>
</tr>
<tr>
<td>§ 23.813</td>
<td>Emergency exit access.</td>
</tr>
<tr>
<td>§ 23.815</td>
<td>Width of aisle.</td>
</tr>
<tr>
<td>§ 23.831</td>
<td>Ventilation.</td>
</tr>
<tr>
<td>Pressurization</td>
<td></td>
</tr>
<tr>
<td>§ 23.841</td>
<td>Pressurized cabins.</td>
</tr>
<tr>
<td>§ 23.843</td>
<td>Pressurization tests.</td>
</tr>
<tr>
<td>Fire Protection</td>
<td></td>
</tr>
<tr>
<td>§ 23.851</td>
<td>Fire extinguishers.</td>
</tr>
<tr>
<td>§ 23.853</td>
<td>Passenger and crew compartment interiors.</td>
</tr>
<tr>
<td>§ 23.855</td>
<td>Cargo and baggage compartment fire protection.</td>
</tr>
<tr>
<td>§ 23.856</td>
<td>Thermal/acoustic insulation materials.</td>
</tr>
<tr>
<td>§ 23.859</td>
<td>Combustion heater fire protection.</td>
</tr>
<tr>
<td>§ 23.863</td>
<td>Flammable fluid fire protection.</td>
</tr>
<tr>
<td>§ 23.865</td>
<td>Fire protection of flight controls, engine mounts, and other flight structure.</td>
</tr>
<tr>
<td>Electrical Bonding and Lightning Protection</td>
<td></td>
</tr>
<tr>
<td>§ 23.867</td>
<td>Electrical bonding and protection against lightning and static electricity</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td></td>
</tr>
<tr>
<td>§ 23.871</td>
<td>Leveling means</td>
</tr>
<tr>
<td>Subpart E. Powerplants</td>
<td></td>
</tr>
<tr>
<td>General</td>
<td></td>
</tr>
<tr>
<td>§ 23.901</td>
<td>Installation.</td>
</tr>
<tr>
<td>§ 23.903</td>
<td>Engines.</td>
</tr>
<tr>
<td>§ 23.904</td>
<td>Automatic power reserve system.</td>
</tr>
<tr>
<td>§ 23.905</td>
<td>Propellers.</td>
</tr>
<tr>
<td>Part 23</td>
<td>무인항공기 추정성</td>
</tr>
<tr>
<td>---------</td>
<td>------------------</td>
</tr>
<tr>
<td>§ 23.907 Propeller vibration and fatigue.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>§ 23.909 Turbocharger systems.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>§ 23.925 Propeller clearance.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 23.929 Engine installation ice protection.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>§ 23.933 Reversing systems.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 23.934 Turbojet and turbofan engine thrust reverser systems tests.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>§ 23.937 Turbopropeller-drag limiting systems.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>§ 23.939 Powerplant operating characteristics.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>§ 23.943 Negative acceleration.</td>
<td>동일요건 적용</td>
</tr>
</tbody>
</table>

Fuel System

§ 23.951 General.	요건 수정
§ 23.953 Fuel system independence.	요건 수정
§ 23.954 Fuel system lightning protection.	요건 수정
§ 23.955 Fuel flow.	요건 수정
§ 23.957 Flow between interconnected tanks.	요건 수정
§ 23.959 Unusable fuel supply.	요건 수정
§ 23.961 Fuel system hot weather operation.	요건 수정
§ 23.963 Fuel tanks: General.	요건 수정
§ 23.965 Fuel tank tests.	요건 수정
§ 23.967 Fuel tank installation.	요건 수정
§ 23.969 Fuel tank expansion space.	요건 수정
§ 23.971 Fuel tank sump.	요건 수정
§ 23.973 Fuel tank filler connection.	요건 수정
§ 23.975 Fuel tank vents and carburetor vapor vents.	요건 수정
§ 23.977 Fuel tank outlet.	요건 수정
§ 23.979 Pressure fueling systems.	요건 수정

Fuel System Components

<p>| § 23.991 Fuel pumps. | 요건 수정 |
| § 23.993 Fuel system lines and fittings. | 요건 수정 |
| § 23.994 Fuel system components. | 요건 수정 |
| § 23.995 Fuel valves and controls. | 요건 수정 |</p>
<table>
<thead>
<tr>
<th>Part 23</th>
<th>무인항공기 적응성</th>
</tr>
</thead>
<tbody>
<tr>
<td>§ 23.997</td>
<td>Fuel strainer or filter.</td>
</tr>
<tr>
<td>§ 23.999</td>
<td>Fuel system drains.</td>
</tr>
<tr>
<td>§ 23.1001</td>
<td>Fuel jettisoning system.</td>
</tr>
</tbody>
</table>

Oil System

§ 23.1011	General.	요건 수정
§ 23.1013	Oil tanks.	요건 수정
§ 23.1015	Oil tank tests.	요건 수정
§ 23.1017	Oil lines and fittings.	요건 수정
§ 23.1019	Oil strainer or filter.	요건 수정
§ 23.1021	Oil system drains.	요건 수정
§ 23.1023	Oil radiators.	요건 수정
§ 23.1027	Propeller feathering system.	요건 수정

Cooling

§ 23.1041	General.	요건 수정
§ 23.1043	Cooling tests.	요건 수정
§ 23.1045	Cooling test procedures for turbine engine powered airplanes.	요건 수정
§ 23.1047	Cooling test procedures for reciprocating engine powered airplanes.	요건 수정

Liquid Cooling

| § 23.1061 | Installation. | 요건 수정 |
| § 23.1063 | Coolant tank tests. | 요건 수정 |

Induction System

<p>| § 23.1091 | Air induction system. | 요건 수정 |
| § 23.1093 | Induction system icing protection. | 요건 수정 |
| § 23.1095 | Carburetor deicing fluid flow rate. | 요건 수정 |
| § 23.1097 | Carburetor deicing fluid system capacity. | 요건 수정 |
| § 23.1099 | Carburetor deicing fluid system detail design. | 요건 수정 |
| § 23.1101 | Induction air preheater design. | 요건 수정 |
| § 23.1103 | Induction system ducts. | 요건 수정 |
| § 23.1105 | Induction system screens. | 요건 수정 |
| § 23.1107 | Induction system filters. | 요건 수정 |</p>
<table>
<thead>
<tr>
<th>Part 23</th>
<th>무인항공기 적용성</th>
</tr>
</thead>
<tbody>
<tr>
<td>§ 23.1109</td>
<td>Turbocharger bleed air system. 요건 수정</td>
</tr>
<tr>
<td>§ 23.1111</td>
<td>Turbine engine bleed air system. 요건 수정</td>
</tr>
</tbody>
</table>

Exhaust System

§ 23.1121	General. 요건 수정
§ 23.1123	Exhaust system. 요건 수정
§ 23.1125	Exhaust heat exchangers. 요건 수정

Powerplant Controls and Accessories

§ 23.1141	Powerplant controls: General. 요건 수정
§ 23.1142	Auxiliary power unit controls. 요건 수정
§ 23.1143	Engine controls. 요건 수정
§ 23.1145	Ignition switches. 요건 수정
§ 23.1147	Mixture controls. 요건 수정
§ 23.1149	Propeller speed and pitch controls. 요건 수정
§ 23.1153	Propeller feathering controls. 요건 수정
§ 23.1155	Turbine engine reverse thrust and propeller pitch settings below the flight regime. 요건 수정
§ 23.1157	Carburetor air temperature controls. 요건 수정
§ 23.1163	Powerplant accessories. 요건 수정
§ 23.1165	Engine ignition systems. 요건 수정

Powerplant Fire Protection

<p>| § 23.1181 | Designated fire zones; regions included. 동일요건 적용 |
| § 23.1182 | Nacelle areas behind firewalls. 요건 수정 |
| § 23.1183 | Lines, fittings, and components. 동일요건 적용 |
| § 23.1189 | Shutoff means. 동일요건 적용 |
| § 23.1191 | Firewalls. 동일요건 적용 |
| § 23.1192 | Engine accessory compartment diaphragm. 동일요건 적용 |
| § 23.1193 | Cowling and nacelle. 동일요건 적용 |
| § 23.1195 | Fire extinguishing systems. 요건 수정 |
| § 23.1197 | Fire extinguishing agents. 요건 수정 |
| § 23.1199 | Extinguishing agent containers. 요건 수정 |
| § 23.1201 | Fire extinguishing systems materials. 요건 수정 |
| § 23.1203 | Fire detector system. 요건 수정 |</p>
<table>
<thead>
<tr>
<th>Part 23</th>
<th>무인항공기 적용성</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subpart F. Equipment</td>
<td></td>
</tr>
<tr>
<td>General</td>
<td></td>
</tr>
<tr>
<td>§ 23.1301 Function and installation.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>§ 23.1303 Flight and navigation instruments.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 23.1305 Powerplant instruments.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 23.1306 Electrical and electronic system lightning protection.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 23.1307 Miscellaneous equipment.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 23.1308 High-intensity Radiated Fields (HIRF) Protection.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 23.1309 Equipment, systems, and installations.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 23.1310 Power source capacity and distribution.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>Instruments: Installation</td>
<td></td>
</tr>
<tr>
<td>§ 23.1311 Electronic display instrument systems.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 23.1321 Arrangement and visibility.</td>
<td>미적용</td>
</tr>
<tr>
<td>§ 23.1322 Warning, caution, and advisory lights.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 23.1323 Airspeed indicating system.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 23.1325 Static pressure system.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 23.1326 Pitot heat indication systems.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 23.1327 Magnetic direction indicator.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>§ 23.1329 Automatic pilot system.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 23.1331 Instruments using a power source.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 23.1335 Flight director systems.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 23.1337 Powerplant instruments installation.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>Electrical Systems and Equipment</td>
<td></td>
</tr>
<tr>
<td>§ 23.1351 General.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 23.1353 Storage battery design and installation.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>§ 23.1357 Circuit protective devices.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 23.1359 Electrical system fire protection.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>§ 23.1361 Master switch arrangement.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 23.1365 Electric cables and equipment.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>§ 23.1367 Switches.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>Lights</td>
<td></td>
</tr>
<tr>
<td>Part 23</td>
<td>무인항공기 적용성</td>
</tr>
<tr>
<td>---------</td>
<td>------------------</td>
</tr>
<tr>
<td>§ 23.1381</td>
<td>Instrument lights.</td>
</tr>
<tr>
<td>§ 23.1383</td>
<td>Taxi and landing lights.</td>
</tr>
<tr>
<td>§ 23.1385</td>
<td>Position light system installation.</td>
</tr>
<tr>
<td>§ 23.1387</td>
<td>Position light system dihedral angles.</td>
</tr>
<tr>
<td>§ 23.1389</td>
<td>Position light distribution and intensities.</td>
</tr>
<tr>
<td>§ 23.1391</td>
<td>Minimum intensities in the horizontal plane of position lights.</td>
</tr>
<tr>
<td>§ 23.1393</td>
<td>Minimum intensities in any vertical plane of position lights.</td>
</tr>
<tr>
<td>§ 23.1395</td>
<td>Maximum intensities in overlapping beams of position lights.</td>
</tr>
<tr>
<td>§ 23.1397</td>
<td>Color specifications.</td>
</tr>
<tr>
<td>§ 23.1399</td>
<td>Riding light.</td>
</tr>
<tr>
<td>§ 23.1401</td>
<td>Anticollision light system.</td>
</tr>
</tbody>
</table>

Safety Equipment

§ 23.1411	General.	요건 수정
§ 23.1415	Ditching equipment.	요건 수정
§ 23.1416	Pneumatic de-icer boot system.	요건 수정
§ 23.1419	Ice protection.	동일요건 적용

Miscellaneous Equipment

<p>| § 23.1431 | Electronic equipment. | 요건 수정 |
| § 23.1435 | Hydraulic systems. | 요건 수정 |
| § 23.1437 | Accessories for multiengine airplanes. | 동일요건 적용 |
| § 23.1438 | Pressurization and pneumatic systems. | 요건 수정 |
| § 23.1441 | Oxygen equipment and supply. | 미적용 |
| § 23.1443 | Minimum mass flow of supplemental oxygen. | 미적용 |
| § 23.1445 | Oxygen distribution system. | 미적용 |
| § 23.1447 | Equipment standards for oxygen dispensing units. | 미적용 |
| § 23.1449 | Means for determining use of oxygen. | 미적용 |
| § 23.1450 | Chemical oxygen generators. | 미적용 |
| § 23.1451 | Fire protection for oxygen equipment. | 미적용 |
| § 23.1453 | Protection of oxygen equipment from rupture. | 미적용 |</p>
<table>
<thead>
<tr>
<th>Part 23</th>
<th>무인항공기 적용성</th>
</tr>
</thead>
<tbody>
<tr>
<td>§ 23.1457 Cockpit voice recorders.</td>
<td>미적용</td>
</tr>
<tr>
<td>§ 23.1459 Flight data recorders.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>§ 23.1461 Equipment containing high energy rotors.</td>
<td>동일요건 적용</td>
</tr>
</tbody>
</table>

Subpart G. Operating Limitations And Information

§ 23.1501 General.	동일요건 적용
§ 23.1505 Airspeed limitations.	동일요건 적용
§ 23.1507 Operating maneuvering speed.	동일요건 적용
§ 23.1511 Flap extended speed.	동일요건 적용
§ 23.1513 Minimum control speed.	동일요건 적용
§ 23.1519 Weight and center of gravity.	동일요건 적용
§ 23.1521 Powerplant limitations.	동일요건 적용
§ 23.1522 Auxiliary power unit limitations.	동일요건 적용
§ 23.1523 Minimum flight crew.	미적용
§ 23.1524 Maximum passenger seating configuration.	미적용
§ 23.1525 Kinds of operation.	동일요건 적용
§ 23.1527 Maximum operating altitude.	동일요건 적용
§ 23.1529 Instructions for Continued Airworthiness.	동일요건 적용

Markings And Placards

<p>| § 23.1541 General. | 요건 수정 |
| § 23.1543 Instrument markings: General. | 요건 수정 |
| § 23.1545 Airspeed indicator. | 요건 수정 |
| § 23.1547 Magnetic direction indicator. | 요건 수정 |
| § 23.1549 Powerplant and auxiliary power unit instruments. | 요건 수정 |
| § 23.1551 Oil quantity indicator. | 요건 수정 |
| § 23.1553 Fuel quantity indicator. | 요건 수정 |
| § 23.1555 Control markings. | 요건 수정 |
| § 23.1557 Miscellaneous markings and placards. | 요건 수정 |
| § 23.1559 Operating limitations placard. | 요건 수정 |
| § 23.1561 Safety equipment. | 요건 수정 |
| § 23.1563 Airspeed placards. | 요건 수정 |
| § 23.1567 Flight maneuver placard. | 요건 수정 |</p>
<table>
<thead>
<tr>
<th>Part 23</th>
<th>무인항공기 적용성</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airplane Flight Manual and Approved Manual Material</td>
<td></td>
</tr>
<tr>
<td>§ 23.1581 General.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 23.1583 Operating limitations.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 23.1585 Operating procedures.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 23.1587 Performance information.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 23.1589 Loading information.</td>
<td>요건 수정</td>
</tr>
</tbody>
</table>
부록 3. 소형 회전익항공기 기술기준 무인항공기 적용성 검토

<table>
<thead>
<tr>
<th>Part 23</th>
<th>무인항공기 적용성</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subpart A. General</td>
<td></td>
</tr>
<tr>
<td>§ 27.1 Applicability.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 27.2 Special retroactive requirements.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>Subpart B. Flight</td>
<td></td>
</tr>
<tr>
<td>General</td>
<td></td>
</tr>
<tr>
<td>§ 27.21 Proof of compliance.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>§ 27.25 Weight limits.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 27.27 Center of gravity limits.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 27.29 Empty weight and corresponding center of gravity.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 27.31 Removable ballast.</td>
<td>미적용</td>
</tr>
<tr>
<td>§ 27.33 Main rotor speed and pitch limits.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>Performance</td>
<td></td>
</tr>
<tr>
<td>§ 27.45 General</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 27.49 Performance at minimum operating speed.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 27.51 Takeoff</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 27.65 Climb: all engines operating.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 27.67 Climb: one engine inoperative.</td>
<td>미적용</td>
</tr>
<tr>
<td>§ 27.71 Autorotation performance.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 27.75 Landing</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 27.87 Height-speed envelope.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>Flight Characteristics</td>
<td></td>
</tr>
<tr>
<td>§ 27.141 General</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 27.143 General</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 27.151 Rate of roll.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 27.161 Trim</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 27.171 Stability: general.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 27.173 Static longitudinal stability.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 27.175 Demonstration of static longitudinal stability.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 27.177 Static directional stability.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>§ 27.231</td>
<td>General</td>
</tr>
<tr>
<td>§ 27.235</td>
<td>Taxiing condition</td>
</tr>
<tr>
<td>§ 27.239</td>
<td>Spray characteristics</td>
</tr>
<tr>
<td>§ 27.241</td>
<td>Ground resonance</td>
</tr>
<tr>
<td>§ 27.231</td>
<td>General</td>
</tr>
<tr>
<td>§ 27.251</td>
<td>Vibration</td>
</tr>
<tr>
<td>§ 27.301</td>
<td>Loads</td>
</tr>
<tr>
<td>§ 27.303</td>
<td>Factor of safety</td>
</tr>
<tr>
<td>§ 27.305</td>
<td>Strength and deformation</td>
</tr>
<tr>
<td>§ 27.307</td>
<td>Proof of structure</td>
</tr>
<tr>
<td>§ 27.309</td>
<td>Design limitations</td>
</tr>
<tr>
<td>§ 27.321</td>
<td>General</td>
</tr>
<tr>
<td>§ 27.337</td>
<td>Limit maneuvering load factor</td>
</tr>
<tr>
<td>§ 27.339</td>
<td>Resultant limit maneuvering loads</td>
</tr>
<tr>
<td>§ 27.341</td>
<td>Gust loads</td>
</tr>
<tr>
<td>§ 27.351</td>
<td>Yawing conditions</td>
</tr>
<tr>
<td>§ 27.361</td>
<td>Engine torque</td>
</tr>
<tr>
<td>§ 27.391</td>
<td>General</td>
</tr>
<tr>
<td>§ 27.395</td>
<td>Control system</td>
</tr>
<tr>
<td>§ 27.397</td>
<td>Limit pilot forces and torques</td>
</tr>
<tr>
<td>§ 27.399</td>
<td>Dual control system</td>
</tr>
<tr>
<td>§ 27.411</td>
<td>Ground clearance: tail rotor guard</td>
</tr>
<tr>
<td>§ 27.427</td>
<td>Unsymmetrical loads</td>
</tr>
<tr>
<td>§ 27.471</td>
<td>General</td>
</tr>
<tr>
<td>§ 27.473</td>
<td>Ground loading conditions and assumptions</td>
</tr>
<tr>
<td>Part 23</td>
<td>무인항공기 적용성</td>
</tr>
<tr>
<td>---------</td>
<td>------------------</td>
</tr>
<tr>
<td>§ 27.475</td>
<td>Tires and shock absorbers. 동일요건 적용</td>
</tr>
<tr>
<td>§ 27.477</td>
<td>Landing gear arrangement. 동일요건 적용</td>
</tr>
<tr>
<td>§ 27.479</td>
<td>Level landing conditions. 동일요건 적용</td>
</tr>
<tr>
<td>§ 27.481</td>
<td>Tail-down landing conditions. 미적용</td>
</tr>
<tr>
<td>§ 27.483</td>
<td>One-wheel landing conditions. 요건 수정</td>
</tr>
<tr>
<td>§ 27.485</td>
<td>Lateral drift landing conditions. 요건 수정</td>
</tr>
<tr>
<td>§ 27.493</td>
<td>Braked roll conditions. 요건 수정</td>
</tr>
<tr>
<td>§ 27.497</td>
<td>Ground loading conditions: landing gear with tail wheels. 미적용</td>
</tr>
<tr>
<td>§ 27.501</td>
<td>Ground loading conditions: landing gear with skids. 미적용</td>
</tr>
<tr>
<td>§ 27.505</td>
<td>Ski landing conditions. 미적용</td>
</tr>
<tr>
<td>Water Loads</td>
<td></td>
</tr>
<tr>
<td>§ 27.521</td>
<td>Float landing conditions 미적용</td>
</tr>
<tr>
<td>Main Component Requirements</td>
<td></td>
</tr>
<tr>
<td>§ 27.547</td>
<td>Main rotor structure. 요건수정</td>
</tr>
<tr>
<td>§ 27.549</td>
<td>Fuselage, landing gear, and rotor pylon structures. 요건수정</td>
</tr>
<tr>
<td>Emergency Landing Conditions</td>
<td></td>
</tr>
<tr>
<td>§ 27.561</td>
<td>General. 미적용</td>
</tr>
<tr>
<td>§ 27.562</td>
<td>Emergency landing dynamic conditions. 미적용</td>
</tr>
<tr>
<td>§ 27.563</td>
<td>Structural ditching provisions. 미적용</td>
</tr>
<tr>
<td>Fatigue Evaluation</td>
<td></td>
</tr>
<tr>
<td>§ 27.571</td>
<td>Fatigue evaluation of flight structure. 미적용</td>
</tr>
<tr>
<td>§ 27.573</td>
<td>Damage Tolerance and Fatigue Evaluation of Composite Rotorcraft Structures. 동일요건 적용</td>
</tr>
<tr>
<td>Subpart D. Design And Construction</td>
<td></td>
</tr>
<tr>
<td>General</td>
<td></td>
</tr>
<tr>
<td>§ 27.601</td>
<td>Design. 동일요건 적용</td>
</tr>
<tr>
<td>§ 27.602</td>
<td>Critical parts. 동일요건 적용</td>
</tr>
<tr>
<td>§ 27.603</td>
<td>Materials. 동일요건 적용</td>
</tr>
<tr>
<td>§ 27.605</td>
<td>Fabrication methods. 동일요건 적용</td>
</tr>
<tr>
<td>§ 27.607</td>
<td>Fasteners. 동일요건 적용</td>
</tr>
<tr>
<td>Part 23</td>
<td>무인항공기 적용성</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>§ 27.609 Protection of structure.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>§ 27.610 Lightning and static electricity protection.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>§ 27.611 Inspection provisions.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>§ 27.613 Material strength properties and design values.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>§ 27.619 Special factors.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 27.621 Casting factors.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 27.623 Bearing factors.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 27.625 Fitting factors.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 27.629 Flutter.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>Rotors</td>
<td></td>
</tr>
<tr>
<td>§ 27.653 Pressure venting and drainage of rotor blades.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 27.659 Mass balance.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 27.661 Rotor blade clearance.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 27.663 Ground resonance prevention means.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>Control Systems</td>
<td></td>
</tr>
<tr>
<td>§ 27.671 General.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 27.672 Stability augmentation, automatic, and power-operated systems.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 27.673 Primary flight control.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 27.674 Interconnected controls.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 27.675 Stops.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 27.679 Control system locks.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 27.681 Limit load static tests.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>§ 27.683 Operation tests.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 27.685 Control system details.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>§ 27.687 Spring devices.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 27.691 Autorotation control mechanism.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 27.695 Power boost and power-operated control system.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>Landing Gear</td>
<td></td>
</tr>
<tr>
<td>§ 27.723 Shock absorption tests.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>§ 27.725 Limit drop test.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>§ 27.727 Reserve energy absorption drop test.</td>
<td>동일요건 적용</td>
</tr>
</tbody>
</table>
Part 23

<table>
<thead>
<tr>
<th>Paragraph</th>
<th>Description</th>
<th>Applicability Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>§ 27.729</td>
<td>Retracting mechanism.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>§ 27.731</td>
<td>Wheels.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>§ 27.733</td>
<td>Tires.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>§ 27.735</td>
<td>Brakes.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>§ 27.737</td>
<td>Skis.</td>
<td>동일요건 적용</td>
</tr>
</tbody>
</table>

Floats and Hulls

<table>
<thead>
<tr>
<th>Paragraph</th>
<th>Description</th>
<th>Applicability Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>§ 27.751</td>
<td>Main float buoyancy.</td>
<td>미적용</td>
</tr>
<tr>
<td>§ 27.753</td>
<td>Main float design.</td>
<td>미적용</td>
</tr>
<tr>
<td>§ 27.755</td>
<td>Hulls.</td>
<td>미적용</td>
</tr>
</tbody>
</table>

Personnel and Cargo Accommodations

<table>
<thead>
<tr>
<th>Paragraph</th>
<th>Description</th>
<th>Applicability Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>§ 27.771</td>
<td>Pilot compartment.</td>
<td>미적용</td>
</tr>
<tr>
<td>§ 27.773</td>
<td>Pilot compartment view.</td>
<td>미적용</td>
</tr>
<tr>
<td>§ 27.775</td>
<td>Windshields and windows.</td>
<td>미적용</td>
</tr>
<tr>
<td>§ 27.777</td>
<td>Cockpit controls.</td>
<td>미적용</td>
</tr>
<tr>
<td>§ 27.779</td>
<td>Motion and effect of cockpit controls.</td>
<td>미적용</td>
</tr>
<tr>
<td>§ 27.783</td>
<td>Doors.</td>
<td>미적용</td>
</tr>
<tr>
<td>§ 27.785</td>
<td>Seats, berths, litters, safety belts, and harnesses.</td>
<td>미적용</td>
</tr>
<tr>
<td>§ 27.787</td>
<td>Cargo and baggage compartments.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 27.801</td>
<td>Ditching.</td>
<td>미적용</td>
</tr>
<tr>
<td>§ 27.805</td>
<td>Flight crew emergency exits.</td>
<td>미적용</td>
</tr>
<tr>
<td>§ 27.807</td>
<td>Emergency exits.</td>
<td>미적용</td>
</tr>
<tr>
<td>§ 27.831</td>
<td>Ventilation.</td>
<td>미적용</td>
</tr>
<tr>
<td>§ 27.833</td>
<td>Heaters.</td>
<td>미적용</td>
</tr>
</tbody>
</table>

Fire Protection

<table>
<thead>
<tr>
<th>Paragraph</th>
<th>Description</th>
<th>Applicability Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>§ 27.853</td>
<td>Compartment interiors.</td>
<td>미적용</td>
</tr>
<tr>
<td>§ 27.855</td>
<td>Cargo and baggage compartments.</td>
<td>미적용</td>
</tr>
<tr>
<td>§ 27.859</td>
<td>Heating systems.</td>
<td>미적용</td>
</tr>
<tr>
<td>§ 27.861</td>
<td>Fire protection of structure, controls, and other parts.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 27.863</td>
<td>Flammable fluid fire protection.</td>
<td>요건 수정</td>
</tr>
</tbody>
</table>

External Load

<table>
<thead>
<tr>
<th>Paragraph</th>
<th>Description</th>
<th>Applicability Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>§ 27.865</td>
<td>External loads.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>Part 23</td>
<td>무인항공기 적용성</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-----------------</td>
<td></td>
</tr>
<tr>
<td>Miscellaneous</td>
<td></td>
<td></td>
</tr>
<tr>
<td>§ 27.871 Leveling marks.</td>
<td>동일요건 적용</td>
<td></td>
</tr>
<tr>
<td>§ 27.873 Ballast provisions.</td>
<td>동일요건 적용</td>
<td></td>
</tr>
<tr>
<td>Subpart E. Powerplants</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General</td>
<td></td>
<td></td>
</tr>
<tr>
<td>§ 27.901 Installation.</td>
<td>동일요건 적용</td>
<td></td>
</tr>
<tr>
<td>§ 27.903 Engines.</td>
<td>요건 수정</td>
<td></td>
</tr>
<tr>
<td>§ 27.907 Engine vibration.</td>
<td>요건 수정</td>
<td></td>
</tr>
<tr>
<td>Rotor Drive System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>§ 27.917 Design.</td>
<td>요건 수정</td>
<td></td>
</tr>
<tr>
<td>§ 27.921 Rotor brake.</td>
<td>요건 수정</td>
<td></td>
</tr>
<tr>
<td>§ 27.923 Rotor drive system and control mechanism tests.</td>
<td>요건 수정</td>
<td></td>
</tr>
<tr>
<td>§ 27.927 Additional tests.</td>
<td>요건 수정</td>
<td></td>
</tr>
<tr>
<td>§ 27.931 Shafting critical speed.</td>
<td>요건 수정</td>
<td></td>
</tr>
<tr>
<td>§ 27.935 Shafting joints.</td>
<td>요건 수정</td>
<td></td>
</tr>
<tr>
<td>§ 27.939 Turbine engine operating characteristics.</td>
<td>요건 수정</td>
<td></td>
</tr>
<tr>
<td>Fuel System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>§ 27.951 General.</td>
<td>요건 수정</td>
<td></td>
</tr>
<tr>
<td>§ 27.952 Fuel system crash resistance.</td>
<td>요건 수정</td>
<td></td>
</tr>
<tr>
<td>§ 27.953 Fuel system independence.</td>
<td>요건 수정</td>
<td></td>
</tr>
<tr>
<td>§ 27.954 Fuel system lightning protection.</td>
<td>요건 수정</td>
<td></td>
</tr>
<tr>
<td>§ 27.955 Fuel flow.</td>
<td>요건 수정</td>
<td></td>
</tr>
<tr>
<td>§ 27.959 Unusable fuel supply.</td>
<td>요건 수정</td>
<td></td>
</tr>
<tr>
<td>§ 27.961 Fuel system hot weather operation.</td>
<td>요건 수정</td>
<td></td>
</tr>
<tr>
<td>§ 27.963 Fuel tanks: general.</td>
<td>요건 수정</td>
<td></td>
</tr>
<tr>
<td>§ 27.965 Fuel tank tests.</td>
<td>요건 수정</td>
<td></td>
</tr>
<tr>
<td>§ 27.967 Fuel tank installation.</td>
<td>요건 수정</td>
<td></td>
</tr>
<tr>
<td>§ 27.969 Fuel tank expansion space.</td>
<td>요건 수정</td>
<td></td>
</tr>
<tr>
<td>§ 27.971 Fuel tank sump.</td>
<td>요건 수정</td>
<td></td>
</tr>
<tr>
<td>§ 27.973 Fuel tank filler connection.</td>
<td>요건 수정</td>
<td></td>
</tr>
<tr>
<td>§ 27.975 Fuel tank vents.</td>
<td>요건 수정</td>
<td></td>
</tr>
<tr>
<td>Part 23</td>
<td>무인항공기 적용성</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>------------------</td>
<td></td>
</tr>
<tr>
<td>$ 27.977$ Fuel tank outlet.</td>
<td>요건 수정</td>
<td></td>
</tr>
<tr>
<td>Fuel System Components</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$ 27.991$ Fuel pumps.</td>
<td>요건 수정</td>
<td></td>
</tr>
<tr>
<td>$ 27.993$ Fuel system lines and fittings.</td>
<td>요건 수정</td>
<td></td>
</tr>
<tr>
<td>$ 27.995$ Fuel valves.</td>
<td>요건 수정</td>
<td></td>
</tr>
<tr>
<td>$ 27.997$ Fuel strainer or filter.</td>
<td>요건 수정</td>
<td></td>
</tr>
<tr>
<td>$ 27.999$ Fuel system drains.</td>
<td>요건 수정</td>
<td></td>
</tr>
<tr>
<td>Oil System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$ 27.1011$ Engines: General.</td>
<td>요건 수정</td>
<td></td>
</tr>
<tr>
<td>$ 27.1013$ Oil tanks.</td>
<td>요건 수정</td>
<td></td>
</tr>
<tr>
<td>$ 27.1015$ Oil tank tests.</td>
<td>요건 수정</td>
<td></td>
</tr>
<tr>
<td>$ 27.1017$ Oil lines and fittings.</td>
<td>요건 수정</td>
<td></td>
</tr>
<tr>
<td>$ 27.1019$ Oil strainer or filter.</td>
<td>요건 수정</td>
<td></td>
</tr>
<tr>
<td>$ 27.1021$ Oil system drains.</td>
<td>요건 수정</td>
<td></td>
</tr>
<tr>
<td>$ 27.1027$ Transmissions and gearboxes: General.</td>
<td>요건 수정</td>
<td></td>
</tr>
<tr>
<td>Cooling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$ 27.1041$ General.</td>
<td>요건 수정</td>
<td></td>
</tr>
<tr>
<td>$ 27.1043$ Cooling tests.</td>
<td>요건 수정</td>
<td></td>
</tr>
<tr>
<td>$ 27.1045$ Cooling test procedures.</td>
<td>요건 수정</td>
<td></td>
</tr>
<tr>
<td>Induction System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$ 27.1091$ Air induction.</td>
<td>요건 수정</td>
<td></td>
</tr>
<tr>
<td>$ 27.1093$ Induction system icing protection.</td>
<td>요건 수정</td>
<td></td>
</tr>
<tr>
<td>Exhaust System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$ 27.1121$ General.</td>
<td>요건 수정</td>
<td></td>
</tr>
<tr>
<td>$ 27.1123$ Exhaust piping.</td>
<td>요건 수정</td>
<td></td>
</tr>
<tr>
<td>Powerplant Controls and Accessories</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$ 27.1141$ Powerplant controls: general.</td>
<td>요건 수정</td>
<td></td>
</tr>
<tr>
<td>$ 27.1143$ Engine controls.</td>
<td>요건 수정</td>
<td></td>
</tr>
<tr>
<td>$ 27.1145$ Ignition switches.</td>
<td>요건 수정</td>
<td></td>
</tr>
<tr>
<td>$ 27.1147$ Mixture controls.</td>
<td>요건 수정</td>
<td></td>
</tr>
<tr>
<td>$ 27.1151$ Rotor brake controls.</td>
<td>요건 수정</td>
<td></td>
</tr>
<tr>
<td>Part 23</td>
<td>무인항공기 시용성</td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>----------------</td>
<td></td>
</tr>
<tr>
<td>$ 27.1163</td>
<td>Powerplant accessories.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>Powerplant Fire Protection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$ 27.1183</td>
<td>Lines, fittings, and components.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>$ 27.1185</td>
<td>Flammable fluids.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>$ 27.1187</td>
<td>Ventilation and drainage.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>$ 27.1189</td>
<td>Shutoff means.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>$ 27.1191</td>
<td>Firewalls.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>$ 27.1193</td>
<td>Cowling and engine compartment covering.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>$ 27.1194</td>
<td>Other surfaces.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>$ 27.1195</td>
<td>Fire detector systems.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>Subpart F. Equipment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$ 27.1301</td>
<td>Function and installation.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>$ 27.1303</td>
<td>Flight and navigation instruments.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>$ 27.1305</td>
<td>Powerplant instruments.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>$ 27.1316</td>
<td>Electrical and electronic system lightning protection.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>$ 27.1307</td>
<td>Miscellaneous equipment.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>$ 27.1317</td>
<td>High-intensity Radiated Fields (HIRF) Protection.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>$ 27.1309</td>
<td>Equipment, systems, and installations.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>Instruments: Installation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$ 27.1321</td>
<td>Arrangement and visibility.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>$ 27.1322</td>
<td>Warning, caution, and advisory lights.</td>
<td>미적용</td>
</tr>
<tr>
<td>$ 27.1323</td>
<td>Airspeed indicating system.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>$ 27.1325</td>
<td>Static pressure systems.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>$ 27.1327</td>
<td>Magnetic direction indicator.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>$ 27.1329</td>
<td>Automatic pilot system.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>$ 27.1335</td>
<td>Flight director systems.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>$ 27.1337</td>
<td>Powerplant instruments.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>Electrical Systems and Equipment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$ 27.1351</td>
<td>General.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>$ 27.1353</td>
<td>Storage battery design and installation.</td>
<td>동일요건 적용</td>
</tr>
<tr>
<td>Part 23</td>
<td>무인항공기 적용성</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>------------------</td>
<td></td>
</tr>
<tr>
<td>§ 27.1357</td>
<td>Circuit protective devices.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 27.1361</td>
<td>Master switch.</td>
<td>미적용</td>
</tr>
<tr>
<td>§ 27.1365</td>
<td>Electric cables.</td>
<td>요건 수정</td>
</tr>
<tr>
<td>§ 27.1367</td>
<td>Switches.</td>
<td>미적용</td>
</tr>
</tbody>
</table>

Lights

§ 27.1381	Instrument lights.	미적용
§ 27.1383	Landing lights.	요건 수정
§ 27.1385	Position light system installation.	요건 수정
§ 27.1387	Position light system dihedral angles.	동일요건 적용
§ 27.1389	Position light distribution and intensities.	동일요건 적용
§ 27.1391	Minimum intensities in the horizontal plane of forward and rear position lights.	동일요건 적용
§ 27.1393	Minimum intensities in any vertical plane of forward and rear position lights.	동일요건 적용
§ 27.1395	Maximum intensities in overlapping beams of forward and rear position lights.	동일요건 적용
§ 27.1397	Color specifications.	동일요건 적용
§ 27.1399	Riding light.	미적용
§ 27.1401	Anticollision light system.	동일요건 적용

Safety Equipment

§ 27.1411	General.	미적용
§ 27.1413	Safety belts.	미적용
§ 27.1415	Ditching equipment.	미적용
§ 27.1419	Ice protection.	동일요건 적용
§ 27.1435	Hydraulic systems.	요건 수정
§ 27.1457	Cockpit voice recorders.	미적용
§ 27.1459	Flight data recorders.	요건 수정
§ 27.1461	Equipment containing high energy rotors.	요건 수정

Subpart G. Operating Limitations And Information

| § 23.1501 | General. | 동일요건 적용 |

Operating Limitations

| § 27.1503 | Airspeed limitations: general. | 동일요건 적용 |
Part 23

§ 27.1505	Never-exceed speed.	동일요건 적용
§ 27.1509	Rotor speed.	동일요건 적용
§ 27.1519	Weight and center of gravity.	동일요건 적용
§ 27.1521	Powerplant limitations.	동일요건 적용
§ 27.1523	Minimum flight crew.	미적용
§ 27.1525	Kinds of operations.	동일요건 적용
§ 27.1527	Maximum operating altitude.	동일요건 적용
§ 27.1529	Instructions for Continued Airworthiness.	동일요건 적용

Markings And Placards

§ 27.1541	General.	요건 수정
§ 27.1543	Instrument markings: general.	요건 수정
§ 27.1545	Airspeed indicator.	요건 수정
§ 27.1547	Magnetic direction indicator.	요건 수정
§ 27.1549	Powerplant instruments.	요건 수정
§ 27.1551	Oil quantity indicator.	요건 수정
§ 27.1553	Fuel quantity indicator.	요건 수정
§ 27.1555	Control markings.	요건 수정
§ 27.1557	Miscellaneous markings and placards.	요건 수정
§ 27.1559	Limitations placard.	요건 수정
§ 27.1561	Safety equipment.	요건 수정
§ 27.1565	Tail rotor.	요건 수정

Rotorcraft Flight Manual and Approved

§ 27.1581	General.	요건 수정
§ 27.1583	Operating limitations.	요건 수정
§ 27.1585	Operating procedures.	요건 수정
§ 27.1587	Performance information.	요건 수정
§ 27.1589	Loading information	요건 수정
국민으로부터 신뢰받는 칭렴한 국토해양부가 되겠습니다.

국토해양부 부조리 신고 센터

국토해양부 공무원의 비위행위 또는 부실공사 현장을 알게 된 경우 지체 없이 아래방법으로 신고하여 주시기 바랍니다.

- 인터넷 신고 : 국토해양부 홈페이지(www.mltm.go.kr) 부조리신고센터
- 우편 신고 : 세종특별자치시 도움6로 11 (우:339-012) 국토해양부 감찰팀
- 전화 상담 : 국민권익위원회 국민신문고 1600-8172

대전광역시 유성구 과학로 169-84 (305-806)
전화번호 042-860-2114 팩스 042-860-2004
www.kari.re.kr