온천 열에너지 활용방안
보고서

2008. 11.

부산대학교 산학협력단
제 출 문

행정안전부 장관 귀하

본 보고서를 “온천 열에너지 활용방안” (연구기간: 2008. 7. 4∼ 2008. 11. 3)의 최종보고서로 제출합니다.

2008. 11.

연구수행기관: 부산대학교 산학협력단

연구책임자: 함 세 영 (부산대학교)

연구원: 송 윤호 (한국지질자원연구원)

이 철우 (한국지질자원연구원)
목 차

1. 서 론 .. 1

2. 과업의 내용 및 범위 .. 3

3. 우리나라 온천업계의 열에너지 활용 상황 ... 5
 3-1. 전국적인 온천수 열에너지 활용 상황 집계 ... 5
 3-2. 부곡온천지역의 온천수 이용 난방사례 분석 ... 7

4. 온도별 온천수 열에너지 활용 방안 .. 11
 4-1. 고온 온천수를 이용한 난방 및 단계별 활용 .. 11
 4-2. 저온 온천수의 경제적 가열방안 .. 13
 4-3. 지열원 열펌프를 이용한 건물 난방 .. 15

5. 온천수 열에너지 활용에 따른 경제성 기초 분석 .. 17
 5-1. 고온 온천수를 이용한 난방의 경제성 .. 17
 5-2. 온천폐수를 이용한 저온 온천수의 가열 .. 22

6. 결론 및 제언 ... 24

부록 A. 열교환기와 열펌프의 원리
 부록 A-1. 판형 열교환기
 부록 A-2. 열펌프
 부록 A-3. 지열원 열펌프 (geothermal heat pump)

부록 B. 온천업소 열에너지 활용방안 수립을 위한 기술적 자료 수집 표

부록 C. 부곡온천지역 온천수 이용 난방시설 점검 사항 조사표 / 조사결과

부록 D. 부곡온천지역 그랜드 호텔 경제성 분석 기초자료

부록 E. 부곡온천지역 (주)레이크힐스 골프텔 경제성 분석 기초자료
그림 목록

그림 3-1. 전국 온천의 토출온도 분포 ... 6
그림 3-2. 현재 난방 또는 가열에 사용하는 에너지원 .. 6
그림 4-1. 프랑스 Creil시에서 지열수로 지역난방을 공급하는 모식도 11
그림 4-2. 고온(60 °C)의 온천수의 열에너지를 열교환기를 통해 일부 회수하여 건물
의 바닥 난방을 공급하고 온천탕으로 활용하는 개념도 10
그림 4-3. 저온 온천수의 가열과 건물(사무실) 냉방공급을 동시에 구현하는 개념도
.. 14
그림 4-4. 온천폐수를 열원으로 하여 열펌프를 통해 저온 온천수의 가열과 폐수의
냉각을 동시에 구현하는 개념도 ... 15
그림 4-5. 온천지역에서 여러 개의 지층공을 통해 지속적으로 온천수를 양수함에 따라
지반의 온도가 높아지는 개념도 ... 16
그림 5-1. 관형 열교환기를 적용한 부곡온천지역의 온천수 이용 건물난방 개념도 ...
.. 17
표 목록

표 3-1. 2007년 부곡온천지역 18개 업소의 온천수 이용 건물난방 공급 현황 9
표 5-1. 부곡온천지역 그랜드호텔의 시설개선을 위한 투자비용 산정 18
표 5-2. 부곡온천지역 (주)레이크힐스 골프텔의 시설개선을 위한 투자비용 산정 20
1. 서 론

2004년부터 상승하기 시작한 석유가는 2008년에 급격히 상승하여 7월에는 일시적이나마 $140를 돌파하는 등 우리나라뿐만 아니라 전 세계 경제에 막대한 부정적 영향을 주고 있다. 2008년 10월 현재는 다소 진정세에 있으나 장기적으로 유가의 고공행진이 이어질 것이라는 전망에 국제기구나 전문가들이 모두 동의하고 있다. 우리나라의 에너지의 약 97%를 수입으로 의존하고 있으며 산업의 에너지 의존도가 매우 높아 고유가로 인한 타격이 다른 나라보다 심하며 국가경제 전체가 심한 몸살을 앓고 있는 근본 원인이 되고 있다.

현재 우리나라에서 영업 중인 온천업소의 70%가량이 토출온도 40 °C 미만이며 총 열에너지에서 이러한 저온 온천수가 차지하는 비중이 83% 가량으로 온천수를 목욕용으로 공급하기 위해서 적지 않은 에너지비용을 지출하고 있어서, 영세한 업소가 많은 온천업계의 경쟁력 약화의 주요 원인이 되고 있다. 현재 행정안전부에서 지역 활성화 차원으로 보양온천제도를 도입하는 등, 온천업계의 활성화를 위한 각 종 정책을 고안하고 있으나 에너지 비용을 낮추는 근본적인 대책이 없는 경쟁력 향상이 쉽지 않은 실정이다.

이러한 이유로 이 연구는 온천수 및 온천폐수가 가지고 있는 열에너지를 이용하여 경제적으로 저온 온천수를 가열하는 방식을 제안하고, 또한 온천탕에 공급하는 데 필요한 온도보다 높은 고온 온천수를 건물난방, 나아가 지역난방에 우선 활용하는 방식을 고안하여 정책 수립의 기초 자료로 제공하고자 수행되었다. 먼저, 우리나라 온천업계의 열에너지 활용 현황을 조사 분석하고, 우리나라에서 유일하게 온천수를 이용해 집단적으로 건물난방을 공급하는 부곡온천지역의 사례를 수집 분석하였다. 이에 기초하여 효과적인 온천수 및 온천폐수의 열에너지 활용 방안을 제시하고 초기 투자비 대비 경제성을 분석하였다. 그러나 시설비는 구체적으로 온천업소의 규모, 밀집도 등에 따라 상당히 달라지므로 이 연구에서 수행한 경제성 분석은 어디까지나 기초 분석으로서 추정 결과임을 밝힌다. 즉, 구체적인 대상지역과 투자계획이 수립되면 대상 건물의 밀집도와 구조, 온천수의 토출온도 및 추출 가능량과 사용량 등에 따라 구체적인 수치는 달라질 것이다.

이 연구가 이루어질 수 있도록 지원하고 또 온천업소의 열에너지 활용 현황 조
사를 가능하게 해준 행정안전부 지역활성화과 관계자분들께 깊이 감사드리고, 조사에 협조해준 전국 기초자치단체 담당자와 부곡온천지역 업소 관계자분들께 감사드립니다. 또한 경제성 평가를 위해 설치 비용 및 운전 비용 조사에 협조해주신 (주)LG 전자의 박근우 박사, ES의 한민수 차장과 임호연 과장께도 감사드립니다.
2. 과업의 내용 및 범위

우리나라에서 영업 중인 온천업소 중 약 70%가 토출온도 40 ℃ 이하의 온천수를 양수하고 있으며 따라서 이들 온천수는 온천탕에 공급되기 이전에 가열되어야 한다. 온천수의 가열을 위해서는 천연가스나 경유, LPG, 전기 등을 에너지원으로 사용하고 있으며 따라서 온천업소의 수익성 또한 연료비의 과다에 절대적으로 의존하고 있는 실정이다.

한편 몇몇 온천지역에서는 50 ℃ 이상의 토출온도를 보이고 있어 가열이 필요하지 않으나, 반대로 온천 급수용으로는 온도가 너무 높아서 냉각의 필요성이 있다. 이러한 고온 온천수는 바닥 난방이나 라디에이터(또는 Fan Coil Unit; FCU)를 통해 건물난방이나 지역난방에 풀록히 이용할 수 있으므로 불규칙하고 부곡온천지역과 그 외 지역의 극히 일부 업소를 제외하고는 건물난방에 활용되고 있지 않아 에너지 낭비 요소가 되고 있다. 또한 부곡온천지역에서도 온천수를 이용한 난방시설 필수적인 열교환기 시설을 통하지 않고 온천수를 직접 난방 배관에 공급함으로써 배관내 침전 등의 부작용으로 유지보수비용의 증대를 초래하고 있다.

이 연구에서는 우리나라 온천의 에너지 비용을 절감하고 나아가 온천수가 가지고 있는 열에너지의 효율적 활용 방안을 제시함으로써 영세한 온천업계의 경쟁력 강화를 위한 정책 수립의 기초 자료를 제공할 목적으로 수행되었다. 이 연구의 목적, 필요성 및 과업범위를 정리하면 아래와 같다.

● 연구 목적: 온천수 및 온천 폐수가 가지고 있는 열에너지에 연계 활용하는 기술의 발굴 보급을 통한 온천업계의 경쟁력 강화 방안 마련

● 연구 배경 및 필요성: 우리나라 온천업계의 에너지 비용 과다 문제 해결 방안 마련 필요
 - 온천수를 이용한 난방 및 영농 등에의 단계 활용 가능성 모색
 - 토출 온도 40 ℃ 이하 저온 온천수의 경제적인 가열방안 확보 필요
 - 온천 폐수의 냉각에 필요한 비용 절감과 냉난방 연계 활용기술 개발 필요
연구내용 및 범위

온천업소의 연간 열에너지 사용량 조사, 집계 및 분석
- 대상: 전국 490여개 업소/680여개 온천공 자료
- 기간: 2008년 7월~9월
- 방법: 행정안전부 협조 공문을 통해 기초자치단체로부터 조사자료 수집
- 수집/분석 대상자료 (부록 B 참조)
 • 업소명/소재지/온천공수/온천공번
 • 일일허가량/평균 양수량/연간 가동일수/토출온도 (2007 기준)
 • 현재 가열 및 난방방식/연간 전기료/연간 유류비 (2007 기준)
 • 현재 열에너지 활용 유무

기존 온천수 열에너지 활용 시설의 사례 분석
- 부곡 온천지역의 온천업소 객실 난방 사례: 18개 업소 (부록 C 참조)
- 강화군 석모도 온천의 인근지역 난방 공급 사례

온도별 온천수 열에너지 활용방안 정립

온천수 열에너지 활용에 따른 경제성 기초 분석

위의 내용 중 전국적인 온천수 활용 현황 분석 및 이에 기초한 경제성 분석은 전적으로 조사 자료의 신뢰도에 그 정확성이 좌우된다. 실제로 외국의 경우에도 여러 가지 이유로 온천 활용 현황 자료는 신뢰도가 낮다고 여겨지고 있으나, 이 연구에서의 조사결과는 지금까지 우리나라 온천업소 온천수 열에너지 이용 현황의 최초 종합 결과라는 데에 의의가 있다. 따라서 이 연구의 조사결과가 어느 정도 신뢰할 만하다는 가정 하에 분석을 수행하였고 또한 경제성도 조사하였다.

온천수의 열에너지의 효과적으로 활용하기 위해서는 어떠한 방식으로든 시설비 (초기 투자비)가 추가로 발생하게 되며 이러한 초기 투자비 대비 투자비 회수기간을 추정하고 이를 토대로 전국적으로 기대되는 파급효과를 산정하였다. 그러나 시설비는 구체적으로 온천업소의 규모, 밀집도 등에 따라 상당히 달라지고 이 연구에서 수행한 경제성 분석은 어디까지나 기초 분석으로서 추정 결과임을 밝힌다. 즉, 구체적인 대상지역과 투자계획이 수립되면 대상 건물의 밀집도와 구조, 온천수의 토출 온도 및 추출 가능량 등에 따라 구체적인 수치는 달라지게 된다.
3. 우리나라 온천업계의 열에너지 활용 상황

이 장에서는 앞장에서 서술한 바와 같은 전국적인 온천업소의 열에너지 활용 상황 조사 결과 및 온천수를 이용해 건물난방을 수행하는 부곡온천지역 업소의 열에너지 활용상황 조사결과를 보이고 이의 분석 결과를 서술하고 있다. 우리나라에서는 최초로 지열수(온천수)를 이용해 지역난방을 시도하고 있는 인천광역시 강화군 석모도의 경우, 그 시도는 매우 훌륭하고 향후 확장성도 기대되나 현재로서는 공급 온도, 수량 등의 구체적인 기술 자료가 없어서 분석에서 제외하였다. 그러나 풍부한 수량(지분량으로 2,000 m³/일)과 온도(70 °C) 면으로 볼 때, 석모도 온천지역이 우리나라에서 온천수 열에너지의 다목적 활용의 가장 대표적인 지역이 될 것이라는 것에는 의심의 여지가 없다 하겠다.

3-1. 전국적인 온천수 열에너지 활용 상황 집계

앞장에서 서술한 바와 같이 2008년 7월중에 행정안전부와 전국 기초자치단체의 협조를 통해 490여개 온천업소(680여개 온천공)의 연간 열에너지 사용량을 조사하였다. 조사항목은 부록 B에 나타나있는 바와 같이 일반사항(업소명/소재지/온천공수/온천공번)과 온천수 재원(일일허가량/평균 양수량/연간 가동일수/토출온도), 그리고 현재 가열 및 난방방식, 연간 전기료 및 유류비, 그리고 현재 열에너지 활용 유무 등이며 2007년도를 기준으로 하였다. 490여개 업소의 자료가 집계되었지만 항목별로 무의미한 자료 또는 빠진 자료들이 있어서 각 항목별 분석 대상 자료 수는 차이가 있다.

먼저 토출온도를 보면 의미있는 435개 자료 중 70%가량인 302개 온천의 토출온도가 40 °C이하로서 가열을 필요로 하고 있다 (<그림 3-1> 참조).
이 자료를 현재 사용하고 있는 가열 또는 난방방식과 비교해 보았다. <그림 3-2>는 현재의 가열 또는 난방방식인데 대표적인 것이 LNG(34%)이고, 그 다음으로 경유(16%), LPG(9%), 전기(8%) 순이다. LNG의 비율이 가장 높은 것은 대도시에 위치한 온천의 경우 연료비가 가장 저렴하기 때문이며, LNG가 공급되지 않는 곳에서 는 경유를 주로 사용하고 있음을 알 수 있다. 한편 온천수로 난방을 한다고 하는 곳이 8%(31개소)로 나타났는데, 이를 토출온도에 따른 분류인 <그림 3-1>에 나타난 50 °C 이상 업소가 83개소인 것과 비교해 보면 상당수의 업소가 고온온천수 열에너지를 난방에 활용하지 않고 있음을 보여주고 있다. 이는 반대로 고온 온천지역에서의 앞으로 온천수 열에너지의 활용을 통해 상당한 에너지 비용을 절약할 수 있다는 것을 말해주기도 한다.
한편 2007년도 총 양수량은 27,727,836 m³(하루 평균 약 76,000 m³)여서 공당 하루평균 112 m³으로 외국과 비교했을 때 사용량은 상당히 적은 편이다. 이는 우리나라 온천수가 주로 화강암 등의 결정질 암반내 심부 파쇄대를 따라 부존하여 그 유출량이 많지 않은 특성을 가지기 때문이다.

에너지 추출량으로 보았을 때, 2007년도 우리나라 온천수를 통해 사용한 총 에너지량은 534,914 Gcal (10⁹ cal)에 이르는데, 이는 연평균 지하수 온도 17 °C를 가정하고 이를 기준한 양으로 아래와 같은 계산식을 따랐다.

\[
\text{에너지 추출량} = \sum \left(\text{일평균 양수량} \times \text{연평균 가동일} \times (\text{용출온도} - 17) \right)
\]

이와 같은 에너지 사용량은 2007년도 경유가 대비(35885.1224원/GJoule) 806억원에 해당하며, 천연가스 대비로는(14461.6667원/GJoule) 325억원에 해당하는 양이다. 만약 올해와 같은 고유가로 생각한다면, 연간 1,000억여원에 해당하는 에너지를 온천수를 통해 얻고 있다고 볼 수 있다. 또한 42 °C 이상으로 가열이 필요하지 않은 고온 온천수를 통한 에너지 사용량은 총 88,647 Gcal로서 전체 온천수 에너지 사용량의 16.6%를 차지하고 있는데, 이는 반대로 우리나라 온천수의 대부분(83% 이상)이 가열을 하여야만 한다는 것을 보여준다.

반면, 온천업소가 지출한 에너지 비용은 전기료 320억원과 유류비 463억원을 합쳐 총 783억원에 이르는데, 이 비용에는 단순히 온천수의 가열뿐만 아니라 냉/난방, 조명 및 취사용 에너지까지 모든 비용이 포함된 것이고 또한 온천탕과 숙박업소의 자료가 구분되어 있지 않아 분석의 큰 의미는 없다고 하겠다.

3-2. 부곡온천지역의 온천수 이용 난방사례 분석

부곡온천지역은 우리나라에서 온천수의 토출온도가 제일 높은 곳이며 또한 우리나라에서 유일하게 온천수를 이용한 건물난방이 집단적으로 이루어지고 있는 곳이다. 따라서 부곡온천지역의 18개 업소에 대한 온천수 이용 난방사례를 조사, 분석하였다. 조사 항목은 온천업소 및 온천공의 기본사항(업소명/소재지/용출온도/사용량)과 기술적 사항(열교환기 사용 유무/난방 공급온도 및 공급량/연중 난방 공급기간/난방 방식), 경제적 사항(설치비와 유지보수비 등), 그리고 문제점/개선해야 할
부곡온천지역에서는 1980년대 초반에 대대적으로 온천수를 이용한 건물난방 시설을 구축하여 대부분의 업소가 25-26년간 온천수 이용 난방을 공급하고 있고 제일 오래된 곳은 동원장으로서 33년간 운영경험을 가지고 있다 (<표 3-1> 참조). 이 18개 업소의 2007년 총 온천수 사용량은 523,744 m³이고 난방수 공급량은 189,690 m³(36%)이며 40-45 °C의 온도로 총 1,082개 객실(연면적 82,470 m²)에 연중 7-8개월간 공급하고 있다. 2007년도에 난방에 공급된 총 열량은 8,062 Gcal로서 이는 경유 대비 1,215 백만원에 해당하는 양이다. 한편 2007년 총 온천수 사용량을 일평균으로 환산한다면 1,435 m³이고 이는 이 업소들의 총 허가량인 3,030 m³의 약 47.4%이다.

즉, 부곡온천지역의 18개 업소의 허가된 모든 온천수를 온천탕 급탕 이전에 지역난방 등에 적용한다면 사용할 수 있는 총 열량은

$$3,030 \text{ m}^3/\text{일} \times 240\text{일} \div 42.5^\circ \text{C} \div 1,000 = 30,906 \text{ Gcal} = 129,805 \text{ GJoule}$$

이 되고 이는 2007년 경유가 대비 4,658 백만원의 열에너지 활용 효과로 나타나게 된다. 물론 온천장에 많은 양의 급탕이 필요하지 않을 경우에 난방 후의 온수를 열교환기로 보내 이차적으로 열을 더 회수하여 인근 비닐하우스에 공급한 후에 원수를 지하로 재주입하는 경우까지를 생각한다면 열에너지 활용 효과는 더욱더 커질 것이다. 다만 부곡온천지역내 온천공이 모두 업소의 소유인 관계로 자원의 공동 관리 및 배분 등에 대한 합의가 먼저 있어야만 이와 같은 활용방식이 현실화될 수 있을 것이다, 장기적으로 지속가능한 온천수 자원의 활용을 만족하기 위해서는 어떤 형태로든 전체적인 master plan의 수립이 필요하다고 하겠다.
<table>
<thead>
<tr>
<th>온천업소명</th>
<th>온출온도 (℃)</th>
<th>일일히가량 (㎡/일)</th>
<th>온천수사용량 (㎡/년)</th>
<th>난방가구수</th>
<th>난방면적 (㎡)</th>
<th>난방공급량 (㎥/년)</th>
<th>난방공급기간 (일)</th>
<th>활용기간 (년)</th>
<th>난방방식</th>
</tr>
</thead>
<tbody>
<tr>
<td>가고파호텔</td>
<td>68</td>
<td>150</td>
<td>13,227</td>
<td>51</td>
<td>3,128</td>
<td>3,968</td>
<td>210</td>
<td>26</td>
<td>바닥난방</td>
</tr>
<tr>
<td>가든관광호텔</td>
<td>82</td>
<td>220</td>
<td>8,999</td>
<td>84</td>
<td>6,298</td>
<td>3,000</td>
<td>210</td>
<td>26</td>
<td>바닥난방, FCU</td>
</tr>
<tr>
<td>그랜드호텔</td>
<td>76</td>
<td>150</td>
<td>57,423</td>
<td>51</td>
<td>3,398</td>
<td>15,150</td>
<td>230</td>
<td>25</td>
<td>바닥난방</td>
</tr>
<tr>
<td>그린비취호텔</td>
<td>78</td>
<td>100</td>
<td>14,708</td>
<td>52</td>
<td>4,961</td>
<td>4,950</td>
<td>250</td>
<td>25</td>
<td>바닥난방</td>
</tr>
<tr>
<td>남양온천모텔</td>
<td>76</td>
<td>80</td>
<td>7,480</td>
<td>31</td>
<td>1,439</td>
<td>7,480</td>
<td>240</td>
<td>25</td>
<td>바닥난방</td>
</tr>
<tr>
<td>대천장</td>
<td>78</td>
<td>190</td>
<td>61,945</td>
<td>59</td>
<td>5,948</td>
<td>17,000</td>
<td>240</td>
<td>26</td>
<td>바닥난방</td>
</tr>
<tr>
<td>동원장</td>
<td>78</td>
<td>150</td>
<td>39,470</td>
<td>58</td>
<td>2,784</td>
<td>12,250</td>
<td>240</td>
<td>33</td>
<td>바닥난방</td>
</tr>
<tr>
<td>(주)레이크힐스골프텔</td>
<td>76~77</td>
<td>460</td>
<td>35,773</td>
<td>167</td>
<td>19,280</td>
<td>3,577</td>
<td>30</td>
<td>28</td>
<td>바닥난방</td>
</tr>
<tr>
<td>모텔퀸</td>
<td>78</td>
<td>120</td>
<td>13,015</td>
<td>38</td>
<td>1,840</td>
<td>13,015</td>
<td>240</td>
<td>27</td>
<td>바닥난방</td>
</tr>
<tr>
<td>부일온천모텔</td>
<td>76</td>
<td>100</td>
<td>7,123</td>
<td>32</td>
<td>2,174</td>
<td>2,100</td>
<td>240</td>
<td>26</td>
<td>바닥난방</td>
</tr>
<tr>
<td>신라장</td>
<td>78</td>
<td>190</td>
<td>38,086</td>
<td>72</td>
<td>4,498</td>
<td>15,000</td>
<td>240</td>
<td>25</td>
<td>바닥난방, FCU</td>
</tr>
<tr>
<td>오리온호텔</td>
<td>78</td>
<td>180</td>
<td>16,938</td>
<td>60</td>
<td>3,875</td>
<td>5,100</td>
<td>240</td>
<td>25</td>
<td>바닥난방</td>
</tr>
<tr>
<td>온천모텔</td>
<td>78</td>
<td>90</td>
<td>29,403</td>
<td>35</td>
<td>2,157</td>
<td>15,100</td>
<td>240</td>
<td>24</td>
<td>바닥난방</td>
</tr>
<tr>
<td>원탑고운호텔</td>
<td>78</td>
<td>120</td>
<td>59,040</td>
<td>37</td>
<td>2,839</td>
<td>14,200</td>
<td>240</td>
<td>12</td>
<td>바닥난방, FCU</td>
</tr>
<tr>
<td>파크관광호텔</td>
<td>78</td>
<td>270</td>
<td>51,331</td>
<td>97</td>
<td>7,114</td>
<td>15,600</td>
<td>240</td>
<td>24</td>
<td>바닥난방</td>
</tr>
<tr>
<td>한성호텔</td>
<td>74</td>
<td>200</td>
<td>34,816</td>
<td>77</td>
<td>5,722</td>
<td>6,800</td>
<td>240</td>
<td>25</td>
<td>바닥난방</td>
</tr>
<tr>
<td>현대온천호텔</td>
<td>74</td>
<td>160</td>
<td>20,275</td>
<td>49</td>
<td>2,810</td>
<td>6,000</td>
<td>240</td>
<td>25</td>
<td>바닥난방</td>
</tr>
<tr>
<td>월든호텔</td>
<td>74</td>
<td>100</td>
<td>29,400</td>
<td>32</td>
<td>2,204</td>
<td>29,400</td>
<td>240</td>
<td>25</td>
<td>바닥난방</td>
</tr>
<tr>
<td>합계</td>
<td>3,030</td>
<td>523,744</td>
<td>1,082</td>
<td>82,470</td>
<td>189,690</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
한편, 조사내용에 포함된 설치비와 유지/보수비, 그리고 연간 에너지 절감량은 자료의 신뢰도가 높지 않아 이를 분석하는 것은 별 의미가 없다고 판단된다. 이 보다는 시스템 설치를 위한 현재의 시장가격과 전기료, 유류비를 고려한 경제성 평가가 의미있으며 이는 5장의 경제성 분석 부분에서 다루기로 한다. 또한 정부의 지원이 있다면 건물 난방을 확대적용할 의사가 있는지에 대한 질문에 대해서는 대부분의 업소가 유지/보수나 리모델링 의사를 밝히고 있어 앞서 서술한 바와 같이 master plan의 수립하에 전반적인 기계설 설비가 필요하다고 판단된다.

특히 부곡온천지역의 업소는 어느 곳에서도 열교환기를 사용하지 않고 온천수를 직접 난방배관에 공급하고 있다. 이러한 이유로 배관내에 침전(scaling 등)이 발생하여 배관의 교체 사유가 발생하고 있으며, 업소에서는 배관 교체시 배관의 내경을 크게 하는 방식으로 이를 대처하고 있는 것으로 보인다. 비록 우리나라의 온천수가 화강암 등 결정질 암반이도 심부 파쇄대를 따라 부존하기 때문에 외국에 비해 총 용존물질(Total Dissolved Solid, TDS)의 양이 적고 또한 scaling의 주 원인이 되는 Si나 CaCO3 성분도 적은 편이지만, 전 세계적으로 지열수(온천수)의 활용은 목욕에 직접 공급되는 경우를 제외하고는 모두 열교환기(대부분이 관형 열교환기)를 통하여 열만 회수하는 방식으로 이루어지고 있으므로 부곡에서도 기계설 설비시에 필수적으로 관형 열교환기를 사용하는 방식으로 개선되어야 할 것이다.
4. 온도별 온천수 열에너지 활용 방안

최근의 관행 열교환기를 이용한 열교환 기술의 발달과 열펌프 기술의 발달에 힘입어 목적에 따라 열에너지지를 활용하는 다양한 방법이 실질적으로 적용 가능해졌다. 이중 대표적인 것으로는 천부 지하 또는 지하수의 온도와 대기 온도와의 차이를 이용해 겨울철에는 건물의 난방을 공급하고 반대로 여름철에는 냉방을 공급하는 지열원 열펌프(부록 A 참조) 시스템임은 두말할 나위가 없다. 이 장에서는 온천수의 온도에 따라 효과적으로 열에너지를 활용하는 방안을 제시한다.

4-1. 고온 온천수를 이용한 난방 및 단계별 활용

지열수 또는 온천수를 이용한 지역난방은 약 100년간의 역사를 가지고 있고, 전세계적으로 많은 나라에서 서로 방식은 다르나 지역난방이나 건물난방에 활용하고 또 온실 등에 단계 활용을 적용하고 있다. 이중 아이슬란드는 고평의 지열수를 이용해서 전국 모든 건물의 약 90% 정도를 지열수로 통한 지역난방으로 공급하고 있다. 온도면에서 우리나라와 비슷한 사례로는 프랑스 Paris 분지를 들 수 있는데, <그림 4-1>은 Paris 분지내 Creil 시에서 지열수를 이용해 지역난방을 공급하는 모식도를 보여준다.

위 그림에서 보면 60 ℃ 온도의 지열수를 양수하여(하루 2,000 m³) 열교환기를 통해 35 ℃의 온도를 추출한 후(ΔT = 35 ℃), 주입정을 통해 저류층으로 환
원시키고 있다. 열교환기를 통해 가열된 순환수의 온도는 55 ℃로 아파트 2,000세대의 바닥난방에 공급되며, 그 후 35 ℃로 식은 순환수에 열펌프를 적용하여 열에너지지를 한 번 더 회수한 후에 최종적으로 10 ℃의 순환수를 다시 열교환기로 보낸다. 이렇게 열펌프를 거치는 이유는 가능한 한 더 많은 열에너지지를 지열수로부터 추출하고자 함이며, 만약 열교환기로 공급되는 순환수가 1차 활용(바닥난방) 후인 35℃라면 저류층으로 되돌아가고(주입되는) 지열수의 온도는 45 ℃ 내외가 되어 그만큼 열 회수 효율이 떨어지기 때문이다. 따라서 우리는 이 사례로부터 열교환기와 열펌프를 적절히 적용함으로써 최소의 에너지(펌프 동력)만으로 최대의 효율을 얻을 수 있는 방법을 고안할 수 있음을 알 수 있다.

고온 온천수를 온천탕에 공급하기 이전에 이러한 개념을 적용하는 방법을 생각해보면 온천수가 온천탕으로 보내지기 이전에 먼저 열교환기를 거쳐서 난방용 순환수의 온도를 충분히 높이는 것을 들 수 있으며 이 개념도가 <그림 4-2>에 보여진다. 열교환기의 사용 목적은 온천수를 직접 바닥난방 등의 배관에 공급하지 않고 단지 열에너지만 회수함으로써 온천수에 녹아있는 여러 가지 화학성분에 의한 배관의 부식 또는 침전(scaling 등)을 막기 위함이다. (부록 A-1 참조)

난방 공급이 가능한 건물 면적은 온천수의 용출온도 및 유량(양수량)에 좌우되며, 예를 들어 현재 온천장 숙박업소의 난방을 온천수로 공급하는 부곡온천 지역의 경우에 연중 충분한 양의 난방을 공급하고 있다. 단, 부곡온천 지역에서는 열교환기를 사용하지 않고 직접 난방을 공급함으로써, 열효율면에서는 유리할 수 있으나 지속적인 배관내 침전의 문제를 안고 있다. 외국의 예에서 볼 수 있듯이, 지열수를 이용한 난방공급은 모두 열교환기를 통해 깨끗한 순환수를 난방에 공급하고 있으므로 부곡온천 지역에서도 장기적으로는 기계실에 열교환기를 설치하여 지속가능한 활용을 모색해야할 것이다.
4-2. 저온 온천수의 경제적 가열방안

우리나라 온천공 대다수의 용출온도가 곧바로 온천탕에 공급할 수 있는 45 ℃ 미만으로 어떠한 방법을 동원해서라도 가열을 해야 하며, 3장에서 살펴본 바와 같이 도시가스나 경유, 등유, 전기 등 다양한 방법을 이용한다. 그러나 석유나 천연가스는 온실가스를 만들어내는 주범이므로 비용이 많이 들게 되며 전기 가열도 상당한 비용을 요구하게 된다. 따라서 부록 A-2에 서술되어 있는 열펌프를 이용해서 경제적으로 가열하는 방법을 생각해볼 수 있다.

<그림 4-3>은 30 ℃의 온천수를 열펌프를 이용해 45 ℃로 가열하면서 동시에 냉방이 필요한 곳에 냉방을 공급하는 개념도를 보여준다. 열펌프는 한 쪽을 가열하게 되면 반대쪽은 냉각을 해야 하는 구조이므로 이러한 방식은 여름철에 특히 유리하며 사무실이 함께 있는 건물의 경우에 냉방부하가 크므로 효과적인 방법이다.
<그림 4-3> 저온 온천수의 가열과 건물(사무실) 냉방공급을 동시에 구현하는 개념 도 (FCU는 Fan Coil Unit).

한편, 많은 온천업소의 경우 사용후 온천수(온천폐수)를 적절한 온도로 냉각시켜 방출시켜야 함에 따라 별도의 공간을 마련하거나 또 다른 에너지를 투입하여야만 한다. 이 때 열펌프를 이용하여 폐수의 온도를 추출하여 저온 온천수를 가열하게 되면 적은 에너지 비용(전기료)으로 온천수 가열과 폐수 냉각의 두 가지 목적을 동시에 달성할 수 있게 된다. 이러한 방식은 계절과 관계없이 적용가능하며, 온천수 원수의 온도 및 양수량 범위에 따라 다양한 용량의 열펌프가 시장에서 조달가능하고, 온천장 뿐만 아니라 일반 목욕장에도 즉각 적용하여 에너지 비용을 절감할 수 있는 방식이다. 실제로 대도시의 많은 대형 목욕장에서는 이러한 목욕폐수 열원 열펌프 이용 가열방식을 채택하고 있다고 하나, 온천업소에는 아직까지 일반적인 보급이 이루어지지 않고 있다.
4-3. 지열원 열펌프를 이용한 건물 난방

많은 수의 온천업소는 숙박업을 겸하고 있다. 숙박업소의 객실은 온천업소의 특성상 연중 상당히 오랜 기간 동안 난방을 공급해야 하므로 냉방보다는 난방부하가 매우 높은 특성을 가진다. 지열원 열펌프는 미국에서만도 800,000대 이상 보급되어 있고 특히 유럽에서는 스웨덴, 독일, 스위스 등지에서 탁월한 난방 공급 방식으로 그 보급이 연평균 10% 이상 지속적으로 증가하고 있다.

지열원 열펌프의 원리는 부록 A-3에 비교적 상세히 서술되어 있는데, 연중 일정한 지하(또는 지하수)의 온도와 대기의 온도차를 이용해 열펌프 기술을 통하여 겨울철에는 난방을, 여름철에는 냉방을 공급하는 시스템으로 간단히 설명할 수 있다. 열펌프의 성능은 입력 열원의 온도와 출력 온도의 차이가 적음수록 높아지게 되는데, 통상적으로 이를 성적계수(COP; Coefficient of Performance = 출력 열에너지 ÷ 입력 전기에너지)로 나타내게 되며 지열원 열펌프의 COP는 3.5 ~ 4.5 범위가 일반적이다.

현재 고려하는 것과 같이 온천업소에서 숙박시설을 갖추고 있어서 난방목적이 냉방보다 훨씬 중요하다고 가정할 경우에, 저하의 온도가 가능하면 높은 것이 유리
하다. 우리나라 대부분의 지역에서 지하 100 m 깊이의 온도는 15 - 16 ℃ 범위인
데, 좁은 지역에 온천업소가 밀집해 있어서 지난 수십년간 지속적으로 온천수를 얻
수한다면 시추공을 따른 온천수의 상승에 의해 천부 지하로 열전도가 발생하여 지
반의 온도가 일반적인 경우에 비해 높아져 있음을 쉽게 생각할 수 있다. 따라서 온
천지역에서의 지반온도는 여타지역에 비해 높으므로 지열원 열펌프를 이용한 난방
에 상대적으로 유리하며 따라서 적은 전기료로 그만큼 높은 난방 효율을 얻게 되는
데 <그림 4-5>는 이를 개념적으로 보여주고 있다.

<그림 4-5> 온천지역에서 여러개의 시추공을 통해 지속적으로 온천수를 얻수함에
따라 지반의 온도가 높아지는 개념도.

이상에서 살펴본 바와 같이 온천수의 온도에 따라 여러 가지의 열에너지 활용
방안을 모색할 수 있는데, 관형 열교환기나 열펌프 기술은 이미 상업적으로 널리
이용되고 있는 기술이니 만큼 온도, 수량 및 업소 특성에 맞게 적절한 활용가
능하다. 단지 현재의 설비를 대체하는 초기 투자비용 대비 회수기간을 고려한 적절한
투자계획의 수립이 필요할 뿐이다.
5. 온천수 열에너지 활용에 따른 경제성 기초 분석

이 장에서는 3장에서 서술한 온천수 열에너지 활용 현황 조사결과에 기초하여 4장의 온도별 활용 방안 중 고온 온천수를 이용한 난방 활용 및 온천 폐수 이용 저온 온천수 가열의 경우에 초기 투자비를 대략적으로 산정하고 운전경비 추정에 근거한 경제성을 분석하였다.

5-1. 고온 온천수를 이용한 난방의 경제성

실제 사례와의 비교를 통한 보다 현실적인 분석을 위해 3·2절에 서술한 부곡온천지역의 두 업소에 대해 고려해본다. <그림 5-1>은 4장에서 서술한 바와 같이 판형 열교환기를 적용하여 온천수를 건물난방에 적용하는 개념도를 보여준다. 76 ºC의 온천수는 열교환기를 거쳐 46 ºC로 식어진 후에 온수저장탱크를 거쳐 온천탕으로 공급되며, 순환수는 25 ºC에서 55 ºC로 가열되어 객실의 바닥난방으로 공급되는 방식이며 열교환되는 온도차(ΔT)는 30 ºC이다.

<그림 5-1> 판형 열교환기를 적용한 부곡온천지역의 온천수 이용 건물난방 개념도.
부곡온천지역 내 그랜드 호텔 사례 적용

부곡온천지역의 업소 중, 그랜드 호텔의 예를 들어본다. 이 업소는 온천 허가량이 일 150 m³이며 현재 3,398 m² (51객실)의 면적에 난방을 공급하고 있다 (<표 3-1> 참조). 만약 허가량을 모두 양수한다고 가정할 때 열교환되는 열용량(즉, 난방 가능량)은

\[Q = 6,250 \text{ kg/h(시간)} \times 30 ^\circ \text{C} = 187,500 \text{ kcal/h (218 kW)} \]

이 되며 한국지역난방공사 열공급규정의 ‘단위연결열부하기준표’의 단위면적당 부하인 89 kcal/m²h를 적용하면 공급가능면적은 2,107 m²가 된다. 이 공급가능면적은 현재 공급되는 면적인 3,398 m²에 비해 일정 2/3정도밖에 되지 않아 효율이 많이 떨어지는 것으로 보이나 <표 3-1>에서의 난방수 공급 온도가 40 - 45 °C인 것에 비해 훨씬 높은 온도를 공급하는 것으로 되어 있어 실제 사용에는 문제가 없을 것으로 예상된다.

한편 <그림 5-1>과 같은 설비를 추가하기 위해서는 두 대의 난방순환펌프가 (예비용을 포함하면 4대) 필요하게 되며 이에 합당한 용량의 열교환기, 자동제어시설, 그리고 기계실의 배관공사가 요구된다. <표 5-1>은 이러한 사양에 기초하여 ‘물가정보’지의 자료 및 설비공사 업체의 자료를 토대로 산출한 설치비용을 보여준다. 여기서 괄호 열교환기는 표준 스테인레스스틸(SUS316L) 재질을 가정하였다. (자세한 산출내역은 부록 D 참조)

<표 5-1> 부곡온천지역 그랜드호텔의 시설개선을 위한 투자비용 산정 (단위: 천원)

<table>
<thead>
<tr>
<th>열량</th>
<th>열교환기</th>
<th>기계실</th>
<th>배관공사</th>
<th>자동제어</th>
<th>순환펌프</th>
<th>합계</th>
</tr>
</thead>
<tbody>
<tr>
<td>218 kW</td>
<td>3,000</td>
<td>7,500</td>
<td>7,000</td>
<td>8,000</td>
<td>25,500</td>
<td></td>
</tr>
</tbody>
</table>

한편, 1년에 9개월간 난방공급을 한다고 가정했을 때, 이러한 시스템의 에너지비용은 순환펌프 가동을 위한 전기료이므로 고압A선택(I) 요금으로 연간 1,061,000원으로 계산된다. 만약 동일한 에너지를 경유를 이용해 공급한다면 2008년 현재 기
준가격인 1,593.93원/리터를 적용했을 때 257,481,000원이 소요되며, LNG로 했을 때에는 89,314,557원이 필요하므로 이미 부곡에서는 막대한 에너지비용을 절약하고 있는 셈이다.

부록 C에 나타낸 조사결과에 의하면 연간 유지보수비가 약 30백만원이 소요된다고 하는데, 이 연구에서 제안한 바와 같이 관형 열교환기를 통한 난방의 경우 배관내 점검으로 인한 교체비용이 필요하지 않아 전기료를 제외하고는 거의 유지보수비가 들지 않는다는 점을 고려한다면 25.5백만원의 투자비는 1-2년내에 회수될 것으로 기대된다.

부곡온천지역내 (주)레이크힐스 골프텔

다른 예로 온천수 허가량이 훨씬 큰 (주)레이크힐스 골프텔의 사례에 적용해본다. 이 업소는 온천 허가량이 일 460 m³이며 현재 19,280 m² (167객실)의 면적에 난방을 공급하고 있다 (표 3-1 참조). 만약 허가량을 모두 양수한다고 가정할 때 열교환되는 열용량(즉, 난방가능량)은

\[Q = 19,167 \text{ kg/h(시간)} \times 30 \text{ °C} = 575,000 \text{ kcal/h (669 kW)} \]

이 되며 마찬가지로 한국지역난방공사 열공급규정의 ‘단위연결열부하기준표’의 단위면적당 부하인 89 kcal/m²h를 적용하면 공급가능면적은 6,461 m²가 된다. 이 또한 <표 3-1>에 나타난 면적 19,280 m²에 비하면 상당히 적은 면적이나 공급 온도차 및 평균 부하량을 고려하면 큰 문제가 되지 않는다고 판단된다.

앞의 경우와 동일한 방식으로 설비교체를 위한 투자비를 계산한다면 <표 5-2>에 나타낸 바와 같이 31백만원으로 추산된다. 물론 이 모든 것은 현재 적당한 공간의 기계실이 존재하고 또한 난방용 배관은 현재 있는 그대로 사용한다는 것을 전제한 것이므로, 만약 기계실이 별도로 없는 경우에는 공간 마련을 위한 시설비가 추가로 필요하게 된다. 한편 연간 9개월 동안 가동한다고 가정했을 때, 순환펌프 가동을 위한 전기료는 3,085,733원으로 역시 거의 미미한 수준으로 나타났다.
위의 두 가지 경우를 비교해보면, 시설용량(즉 열량)은 세배이상 증가했어도 설
치비용은 크게 차이가 나지 않을음을 알 수 있는데, 이는 기본 비용이 차지하는 비중
이 그만큼 크다는 것을 말해준다. 또한 (주)레이크힐스 골프텔의 양수 허가량이 가
장 크므로 다른 업소의 시설 교체를 위한 투자비용 최대 30백만원 이내일 것이고, 평균적으로 약 170 m³/일이므로 이를 최대용량으로 하다고 해도 투자비용은 평균 27 백만원 선으로서 18개 업소의 전체 시스템 개선의 소요비용은 486백만원으로 예상
된다. 반면 운영을 위한 전기료는 열량에 비례하여 증가하므로 만약 18개업소가 모
두 새로운 시스템의 개선할 경우 연간 총 전기료는 약 21백만원 이하므로, 가장
저렴한 LNG로 이 열량을 공급한다고 해도 1,800백만원이 필요하므로 (이 지역은
LNG가 보급되어 있지 않아 2008년 경유가로 하면 5,200백만원), 실로 막대한 에너
지 절감효과를 기대할 수 있게 되며, 현재 시설의 총 유지보수비가 398백만원인 것
과 비교해보아도 1-2년만에 투자비 회수 효과를 기대할 수 있다.

새롭게 건물난방을 적용할 경우: 부산 동래온천지역

부산 동래온천지역은 64 °C의 용출온도를 보여 부곡 다음으로 온도가 높은 지
역이다. 3-1절에 서술한 전국 온천업소 열에너지 활용 현황 조사 결과에 따르면 이
지역의 총 일일 양수 허가량은 2,520 m³인데 이 지역내 어떤 업소에서도 온천수를
이용한 난방을 실시하지 않고 있다. 이 지역의 온천수 온도가 부곡보다 낮으므로,
여기서는 <그림 5-1>의 경우와 달리 20 °C의 온도차(ΔT)를 기대할 수 있다. 따라서
판형 열교환기를 통해서 얻어질 수 있는 총 열량은

\[Q = 60,480 \text{ kg/h(시간)} \times 20 \degree \text{C} = 1,209,600 \text{ kcal/h (1,411 kW)} \]
이 되며 마찬가지로 한국지역난방공사 열공급규정의 ‘단위연결열부하기준표’의 단위 면적당 부하인 89 kcal/m²h를 적용하면 공급가능면적은 13,591 m²이 되어 상당히 많은 업소의 객실의 난방을 공급할 수 있는 열량이다. 동래지역에 13개의 업소(시영 공은 1개로 취급)에 관서 열교환기를 설치한다고 하면, 부곡의 경우와 마찬가지 개념으로 업소당 평균 27백만원이 필요하여 351백만원의 시설비가 필요하며(건물 내부 배관은 이미 있는 시스템을 사용한다고 가정) 운전비는 연 11백만원으로 예상된다. 반면 이 지역에서 가능한 LNG로 동일한 면적에 난방을 모두 공급한다면 총 1,000백만원이 소요될 것이므로 설치한 해에 바로 투자비 회수가 되고 남을 의미한다.

국내 온천업소 중 부곡과 동래를 제외한 지역은 토출온도가 60 ℃ 이하로 열교환기를 통한 바닥난방에 그리 효율적이지 못하다. 물론 <그림 4-1>에 나타낸 프랑스 Paris 분지내 Creil 시와 같은 방식으로 집단 지역난방을 수행하는 경우를 고려할 수 있으나 이는 대규모로 이루어져야 하므로 소규모 온천 업소별로 경제성을 분석하는 것이 어려워서 여기서는 제외하였다. 그러나 이것이 온천수를 이용한 난방의 경제성이 없다는 것은 아니며 업소의 특성별로 충분히 경제성이 있는 활용방식은 고안할 수 있는가 보니 이 연구에서 모든 업소별로 다룰 수 없기 때문에 제외하였다.

한편 70 ℃ 내외의 자연용출 2개공이 확보되어있는 인천광역시 강화군 석모도 온천의 경우 자연용출량이 일일 4,000 m³이므로 이는 총 47,000 m²의 난방이 가능한 양이며, 2008년도 경유가 대비 연 57억원의 절감효과를 기대할 수 있다. 물론 석모도에는 아직까지 온천업소 건물이 들어서있지 않아 종합적인 투자계획이 이루어져 있겠지만 지역난방까지 포함하여 온천수를 이용하여 막대한 에너지 활용 효과가 기대된다.

지금까지의 분석은 온천수를 이용하여 바닥난방을 공급하는 것만을 고려한 것이다. 온천업소내 객실의 경우에는 급탕도 별도로 공급되어야 하는데, 이러한 급탕은 온천장의 사용후 온천폐수의 열에너지를 열펌프를 이용해 회수하는 방식으로 해결할 수 있으므로 또 다른 에너지 절감효과를 기대할 수 있다. 앞서 밝힌 바와 같이 시설비는 기계설에 적절한 공간이 갖추어져 있음을 가정한 것으로 공간이 없을 경우에는 별도의 공간 설치비가 필요하다 대부분의 경우, 경유 저장용 탱크 공간이 있을 것이므로 추가 비용이 많이 필요할 것으로는 생각되지 않는다.
5-2. 온천폐수를 이용한 저온 온천수의 가열

앞서 서술한 바와 같이 우리나라는 온천수 사용 총량 중, 도출온도 40 °C 이하로서 어떤 식으로든 가열이 필요한 업소가 약 70%가량이다. 현재 대도시의 대형 목욕탕에서는 목욕 후 폐수를 열원으로 열펌프를 가동하여 수돗물(또는 지하수)을 가열함으로써 연료비를 절감하고 있으나 온천업소에서는 이러한 방식을 사용하지 않고 있다.

현재 대형 목욕탕에서 사용하는 실례를 통해 온천폐수 열원 저온 온천수 가열 방식의 경제성을 분석해본다. <그림 4-4>와 같은 개념도에서 폐수의 온도를 25 °C, 열펌프 활용후의 방류수 온도 7 °C, 급수온도가 28 °C에서 60 °C라고 한다. 유량은 일일 300 m³이고 연 2,000시간 (200일 × 10시간) 가동한다고 가정한다. LNG보일러와 온천폐수 열원 열펌프 가동 연료비는 각각 아래와 같다.

- LNG: 660원/m³(단가) × 64.0m³/h(소비량) × 0.8(평균부하율) × 2,000(연간가동시간) = 67,584,000원
- 열펌프가동전기료: 80원/kWh(단가, 일반용) × 116.0kW/h(소비량, 198 RT급) × 0.8(평균부하율) × 2,000(연간가동시간) + 7,519,000(기본요금) = 22,367,000원

즉 업소당 연간 약 45백만원의 연료비 절감효과가 나타나고, 198 RT급 열펌프 시설로 교체하는 비용은 380백만원이라고 했을 때 (보수적인 수치), 약 8년 5개월 후에 투자비용 회수 효과가 나타난다. 만약 LNG가 공급되는 대도시가 아니어서 경유를 사용한다면

- 경유: 1594원/리터 × 47.34리터/h(소비량) × 0.8(평균부하율) × 2,000(연간가동시간) = 120,736,000원

이어서 연간 절감효과는 98백만원 이상으로 최대 4년 이내에 투자비 회수가 가능하다. 물론 이는 최근의 고유가를 반영한 것으로 유가가 안정된다면 약간 길어질 수 있었으나, 유가의 안정성은 크게 없는 것이 확실히 되므로 5년내에 투자비 회수가 가능하다고 볼 수 있다. 또한 이 수치는 저온 온천수의 온도를 28 °C로 낮추어 잡
았고, 또한 폐수의 온도가 최저값인 25 °C로 가정한 보수적인 추정치로, 실제적으로는 더 높은 효율을 낼 것임은 자명하다.

한편 전국 온천업소의 2007년도 유류비가 463억원대이고 폐수열원 열펌프 가동 전기료가 경유가 대비 1/5 수준이므로 열펌프의 대대적인 보급으로 온천업소 전체의 유류비를 연간 370억원씩 절감할 수 있다는 추산이 가능하다. 그러나 조사된 유류비에 난방 및 취사비가 포함되어 있으므로 이는 과장된 계산일 수 있다. 그러나 일부 업소에서는 전기 가열을 수행하는데 이 부분만 분리할 수 없는 문제도 있어서 유류비가 더 높으며 또한 현재의 고유가를 고려한다면 대략적인 연간 에너지비용 절감효과로 이 정도로 추산해도 큰 무리는 없다고 생각된다.

지금까지의 논의를 정리한다면, 복극온천지역에서는 약 486백만원의 시설 개선비용 투자로 유지보수비용을 감소시켜 1-2년내에 투자비 회수가 가능하다. 아직까지온천수를 이용한 건물난방을 시행하고 있지 않은 동래온천지역에서는 약 351백만원의 공사비로 업소내 LNG대비 연간 약 600백만원의 건물난방용 유류비(2007년 유류비 기준) 절감을 실현할 수 있으며, 남은 온천수를 소규모 지역난방으로까지 확대한다면 추가적으로 400백만원의 절감효과가 기대된다. 석모도 온천의 경우 산재한 건물에 지역난방을 실시해야하므로 투자비용 쉽게 산정할 수 없으나, 경유대비 연간 5,700백만원을 절감할 수 있는 온천수 열에너지가 확보되어 있다.

온천폐수 열원의 열펌프를 이용하여 저온 온천수를 가열하는 경우에 간접적인 방식으로 전국적으로 연간 370억원의 에너지비용을 절감할 수 있다는 결론을 얻었으며 투자비용 회수기간은 유가에 따라 좌우되나 약 5년으로 추정된다.
6. 결론 및 제언

현재 우리나라에서 영업 중인 온천업소의 70%가량이 토출온도 40 °C 미만이며 총 열에너지에서 이러한 저온 온천수가 차지하는 비중이 83% 가량으로 온천수를 목욕용으로 공급하기 위해 적지 않은 에너지비용을 지출하고 있어서, 영세한 업소가 많은 온천업계의 경쟁력 약화의 주요 원인이 되고 있다. 현재 행정안전부에서 지역 활성화 차원으로 보양온천제도를 도입하는 등, 온천업계의 활성화를 위한 각종 정책을 고안하고 있으나 에너지 비용을 낮추는 근본적인 대책 없이는 경쟁력 향상이 쉽지 않은 실정이다.

이러한 이유로 이 연구에서는 온천수 및 온천폐수가 가지고 있는 열에너지를 이용하여 경제적으로 저온 온천수를 가열하는 방식을 제안하고, 또한 온천탕에 공급하는데 필요한 온도보다 높은 고온 온천수를 건물난방, 나아가 지역난방에 우선 활용하는 방식을 고안하여 정책 수립의 기초 자료로 제공하고자 하였다.

우리나라 온천업소의 2007년도 온천수 열에너지 사용량은 17 °C 기준으로 총 534,914 Gcal (10^9 cal)에 이르며 이는 2007년 경유가 대비 806억원에 이르는 막대한 양이다. 그러나 70%에 이르는 업소에서 저온 온천수를 가열하여 온천탕에 공급하고 있으며, 2007년도에 지출한 에너지비용은 전기료(320억원)와 유류비(463억원)를 합쳐 783억원이다. 물론 이 비용에는 가열뿐만 아니라 숙소의 난방, 조명 및 취사용 연료비까지 모두 포함하고 있어서 가열용과 난방용만을 분리할 수는 없다. 한편 우리나라에서 유일하게 온천수를 이용해 집단적으로 건물난방을 공급하는 부곡온천지역의 연간 난방 공급열량은 8,062 Gcal로서 이는 경유대비 1,215 백만원에 해당하는 양이다.

온천수 열에너지 활용방안으로는 먼저 60 °C 이상 고온 온천수를 온천탕에 보낼 때 이전에 열교환기를 통해서 건물난방에 공급하는 방식을 들 수 있다. 현재 부곡온천지역에서 온천수를 이용해 업소의 객실에 난방을 공급하고 있으나 열교환기를 사용하지 않는 원시적인 방식으로써 배관내 침전 등의 문제로 인해 적지 않은 유지보수비를 지출하고 있다. 이 연구에서 제안한 방식을 따르면, 부곡온천지역에서는 약 486백만원의 시설 개선비용 투자로 유지보수비를 감소시켜 1-2년내에 투자비 회수가 가능하다. 아직까지 온천수를 이용한 건물난방을 시행하고 있지 않은 동
래온천지역에서는 약 351백만원의 공사비로 LNG대비 연간 약 600백만원의 건물난방 유류비(2007년 유류비 기준) 전액을 절감할 수 있으며, 낮은 온천수를 소규모 지역난방으로까지 확대한다면 추가적으로 400백만원의 절감효과가 기대된다. 석모도 온천의 경우 산재한 건물에 지역난방을 실시해야하므로 투자비용 쉽게 산정할 수 없으나, 경유대비 연간 5,700백만원을 절감할 수 있는 온천수 열에너지가 확보되어 있다.

우리나라 온천업소의 70% 가량을 차지하고 있는 40 ℃ 이하 저온 온천수의 경우에는, 온천폐수 열원의 열펌프를 이용하여 가열하는 방식을 제안하였으며 간접적인 방식으로 전국적으로 연간 370억원의 에너지 비용을 절감할 수 있다는 결론을 얻었으며 투자비용 회수기간은 5년에 따라 좌우되거나 약 5년으로 추정된다.

그 외 50 ℃ 내외의 온천수의 경우에는 난방에 활용될 수는 없으나 역시 폐수 열원 열펌프를 활용함으로써 객실 급탕 공급이 가능할 것으로 기대된다. 다만 이러한 경우에 엽소별 규모나 밀집도 등에 따른 변수가 다양하여 종합적인 경제성 분석은 어렵다. 지금까지의 경제성 분석은 대표적인 사례를 이용한 기초분석이며, 기준 건물의 구조, 규모, 그리고 건물의 밀집도 등에 따라 구체적인 투자비용 및 투자비용 회수기간이 달라짐을 밝혀둔다. 또한 여기서는 온천지역 주변의 비닐하우스 등에의 2차 열에너지 활용을 고려할 수 없었는데, 농업지구 인근에 위치한 고온 온천 지역의 경우에는 이러한 단계적 활용도 고려할 수 있을 것이다.

지금까지의 연구결과를 정리한다면, 온천수 온도의 높낮이에 관계없이 이 연구에서 제안한 방식으로 현재의 에너지비용에 비해 적게는 수십억원에서 최대 400억원까지의 절감이 가능하며, 저온 온천수 가열방식의 경우 5년이면 투자비용 회수가 가능한 것으로 나타난다. 여기에 아직까지 활성화되어 있지 않은 고온 온천수 자원을 활용하는 것까지를 고려한다면 온천수를 이용한 에너지 이용이 극대화될 것으로 기대된다.

그러나 우리나라는 온천업계의 영세성을 고려할 때, 온천수 열에너지 활용사업은 초기에는 정부 보조금 지급이나 정기 자img리용자 프로그램을 통해 사업의 효율성을 널리 홍보하는 것이 주천된다. 또한 특정지역내의 유사 온도를 보이는 온천공은 집단으로 관리함으로써 열에너지 활용의 효율성을 높이는 방향으로 온천공 소유주들로 유도한다면, 더욱 많은 건물난방과 더 나아가 지역난방과 시설영농의 연계를 통해 지역활성화에 진정하게 이바지하는 하나의 방법이 될 수 있을 것이라 생각된다.
부록 A. 열교환기와 열펌프의 원리

부록 A-1. 판형 열교환기

대부분의 지열수(또는 온천수)는 높은 온도를 가지고 지하로부터 유출되므로 다양한 화학성분들이 다양 녹아 있다. 이러한 화학성분들은 배관의 부식 및 배관내 침전(clogging 또는 scaling)을 야기하므로 대부분의 경우에 지열수를 직접적으로 난방 등의 배관에 보내지 않고 지열수가 가지고 있는 열만 전달하는 방식을 취하게 된다. 이와 같이 지열수가 가지고 있는 열에너지를 별도의 난방용 폐회로에 전달하는 방법을 열교환(heat exchange)이라 하며 대부분의 지열수 이용에는 판형 열교환기(plate heat exchanger)를 사용한다.

<그림 A-1> 판형 열교환기의 작동원리.

판형 열교환기는 유체의 직접적인 접촉없이 열만 전달하는 목적으로 사용되는 가장 대표적인 열교환기의 형태이며, 기타 방법에 비하여 아래와 같은 장점을 가진다.

1) 높은 열교환 성능: 판형 열교환기는 기타 방식(shell 이나 tube 방식)에 비해 3-4배 열교환 계수가 높다.
2) 부식방지용 합금의 다양성: 얇은 판들로 열전달 면적이 이루어져 있어 스테인레스 스틸이나 다른 합금들을 비교적 저렴한 가격으로 조달할 수 있다. 합금의 종류로 통상적인 지열수에는 스테인레스 스틸(304SS 또는 316SS)이 많이
사용되며, 염수(즉 해수)의 경우에는 강한 부식성 때문에 티타늄(Titanium)을 사용하게 된다.

3) 유지보수의 간편함: 여러 개의 작은 판으로 이루어져 있어 각각의 판을 검사하거나 청소하기가 쉽다. 특히 판들을 고정하는 볼트만 풀게 되면 쉽게 분해할 수 있다.

4) 용이한 확장성: 설치한 후에 열교환 용량의 증가가 필요하면 판을 추가함으로써 쉽게 해결될 수 있으며, 또한 2-3개의 판형 열교환기를 쉽게 연결할 수도 있어서 공간이 매우 절약된다.

5) compact한 design: 높은 열교환 성능과 공간 절약적인 판 배열을 통해 전체 기기의 부피가 매우 작아진다. 따라서 판형 열교환기는 기타 열교환 방식에 비해 10-50%의 공간만 있다면 설치할 수 있다.

<그림 A-2> 여러 개의 판형 열교환기가 설치되어있는
<그림 A-3> 판형 열교환기를 이루고 있는 얇은 판을 살펴보는 모습.
부록 A-2. 열펌프

열펌프(heat pump)란 말 그대로 열을 낮은 곳에서부터 높은 곳으로 옮겨주는 장치이다. 이는 물을 퍼내는 데 사용하는 펌프가 자연적인 물의 흐름(높은 곳에서 낮은 곳으로)을 거슬러 품어내는 것과 마찬가지로, 자연적인 열의 흐름(온도가 높은 곳에서 온도가 낮은 곳으로)을 거슬러 낮은 온도를 높은 온도로 바꿔주기 때문에 붙은 이름이다. 따라서 펌프를 작동시키기 위해 사람의 힘이나 전기가 필요하듯이, 열펌프를 작동시키기 위해서도 외부로부터 에너지가 필요하게 되고 보통 전기를 이용하게 된다. 그러나 열펌프가 주변의 자연적인 열원 즉, 공기, 지하, 지하수 또는 폐수 등을 사용하게 되므로 비교적 적은 에너지로도 작동할 수 있으며 단지 난방용 뿐만 아니라 냉방용 또는 동시 냉/난방으로도 사용가능하다.

<그림 A-4>는 전형적인 증기압축형 열펌프의 작동원리를 보여주며, 폐회로상에서 증발-압축-응축-팽창의 4단계로 이루어진다. 따라서 주요 부분도 압축기, 평창밸브 및 두개의 열교환 부분(증발기와 응축기)으로 이루어진다. 이러한 부분은 회반성이 강한 작동유체(냉매)를 통해 폐회로상으로 연결되어 증발-압축-응축-팽창의 단계를 반복하게 된다.
<그림 A-4> 열펌프 작동 원리. 1. 온천폐수가 열원일 경우 온천원수가 가열, 2. 지중열이 열원일 경우 난방, 3. 냉방일 경우에는 지하에 열을 방출(가열).

증발기에서 액체상태 냉매의 온도는 열원보다 낮게 공급되어 열교환을 통해 열원의 온도를 낮추는 대신에 자신의 온도가 높아져 기체상태로 된다. 이렇게 온도가 높고 증기상태인 냉매는 압축기에서 고온 고압의 기체로 변한 후에 응축기에서 열(잠열)을 버리고 액체상태로 응축되게 된다. 이러한 고온 고압의 액체상태 냉매는 팽창밸브에서 압력과 온도를 잃고 원래상태로 다시 증발기로 들어가는 과정을 반복한다. 압축기는 보통 전기모터로 작동되고 응축기는 지중 열교환기, 지하수 등이 될 수 있으며 가정용 에어컨의 경우에는 실외기가 이 역할을 하게 된다.

작동유체로는 전통적으로 CFC (Chlorofluorocarbons) 가스를 사용해오고 있지만 프레온 가스가 오존층 파괴와 온실가스의 주범으로 인식됨에 따라 특별한 처리과정을 통한 제품들이 현재에는 사용되고 있으나 곧 사용이 전면 금지될 것이다. 이보다는 좀 안전한 H-CFC 계통(R-22, R-401 등)이 사용되고 있으나 선진국에서는 이 또한 2020년 이후로는 사용이 금지된다. 대신에 HFC(hydrofluorocarbon) 계통은 오
존충 파괴를 야기하지 않아 앞으로도 상당기간 사용될 것으로 생각되나 지구온난화에는 영향을 미치며, 또한 암모니아, 물, CO$_2$ 등의 천연 냉매를 사용하는 경우도 증가하고 있다.
부록 A-3. 지열원 열펌프 (geothermal heat pump)

최근 들어 천부 지중열을 이용한 냉난방이 지열에너지의 가장 활발한 이용 분야인데, 이는 앞서 서술한 열펌프(heat pump)의 열원으로 지하(또는 지하수)와 대기와의 온도차를 이용한 기술로서 미국, 유럽에서 그 수요가 급증하고 있다. 즉, 에어컨은 공기를 열원으로 하는 열펌프의 일종으로 단지 냉방만 수행하지만 지열원 열펌프는 지하의 일정한 온도를 이용하는 것으로 냉방과 난방을 동일한 설비로서 공급한다. 또한 열교환기를 방송에 위치시키느냐, 지하수를 이용하느냐 또는 호수나 하천 등의 지표수를 이용하느냐에 따라 조금씩 다른 이름으로 불리기도 하는데, 근본적인 원리는 동일하다. 이러한 지열원 열펌프의 가장 큰 장점은 심부 지열에너지 자원과는 달리 지역적인 편재성이 없이 언제 어디 사는데 활용 가능한 소위 ubiquitous 에너지원 활용방식이라는 점이다.

![그림 A-5] 지중 열교환기를 이용한 지열원 열펌프의 원리.

<그림 A-6>은 지열원 열펌프를 이용한 냉난방 시스템을 지중 열교환 방식에 따라 모식도로 보여주고 있다. 그림의 왼쪽은 소위 개방형(open-loop) 시스템으로 지하수 대수층이 존재할 때 지하수를 끌어올려 그 열에너지를 사용하여 냉난방을 하는 시스템이다. 동일한 원리로 하천인근에서는 하천수를 이용할 수도 있다. 그러
고 면 오른쪽은 현재 제일 많이 사용되는 형태로 지하 배관에 열전도도가 높은 유체를 순환시켜 망으로부터 열(또는 냉기)을 얻는 소위 폐쇄형(closed-loop) 시스템을 보여준다. 미국 등지에서 폐쇄형 시스템을 많이 사용하는 이유는 지하수층이 매우 심부에 존재하는 지역이 많은 원인에서 찾을 수 있을 것이다.

온도 측면에서 지열원 열펌프 시스템의 장점을 알아보기 위하여 <그림 A-7>에 지하 심도별 온도변화를 나타내었다. 그림에서 보다시피 일별 또는 계절별 온도변화는 지하 20 m 이상 심도의 온도에 영향을 미치지 못하는 것을 알 수 있다. 그 하부 심도에서는 평균 지온증가율을 따라 증가하는데 우리나라의 경우 100 m 심도에서의 지온은 약 16 °C로 연중 일정하다. 이를 대기온도 변화와 비교한 것이 <그림 A-8>인데 여기서 우리는 서울의 연중 기온 변화양상과 비교함으로써 전부 지중열을 이용한 지열원 열펌프 시스템의 이점을 쉽게 이해할 수 있다.

<그림 A-6> 열교환 방식에 따른 지열원 열펌프의 종류.
<그림 A-7> 우리나의 지하의 온도 변화 모식도. 약 20 m 하부의 지온은 일정함을 보여준다.

<그림 A-8> 서울지역의 30년간 계절별 평균 기온 변화. 지중열을 이용하면 여름철에는 약 15 ℃의 냉방용 온도차, 겨울철에는 20 ℃ 이상의 난방용 온도차를 열원으로 활용할 수 있다.

냉난방 시스템의 효율은 주로 성적계수 또는 COP (Coefficient of Performance = Thermal output ÷ Power input)로 나타내는데, 지중열을 이용한 냉난방의 경우 COP = 3.5 ~ 4.0의 수준으로 알려져 있어 매우 높은 에너지 효율을 기대할 수 있다. 그러나 이 수치는 방 속에 열교환기를 설치하는 경우에 해당하는 것이고 만약
지하에 대수층이 잘 발달되어 있는 경우에 지하수를 끌어올려 사용하는 open-loop 시스템에서는 이 보다 훨씬 높은 COP를 기대할 수 있다고 알려져 있다.

우리나라에서 고온 온천이 집중되어 있는 곳에서는 지난 수십년 동안 인접해 있 는 많은 온천공에서의 양수를 통해 지반의 온도가 평균에 비해 상당히 상승해 있을 것으로 쉽게 짐작할 수 있다. 따라서 이러한 지반온도 상승은 겨울철 건물 난방에 특히 유리하므로 온천 단지 등의 난방에 지열원 열펌프 시스템의 효율적인 적용이 기대된다.
전국 온천업소 열에너지 활용방안 수립을 위한 기술적 자료 수집 표

이 조사는 온천수의 열에너지지를 난방 또는 냉/난방에 함께 활용함을 통해 온천업소의 연료비를 절감함으로써 우리나라 온천업계의 경쟁력을 강화하기 위한 방안을 수립할 목적으로 시행하는 것입니다. 정확한 자료를 제공하셔서 효과적인 지원방안이 수립될 수 있도록 협조하여주시기 바랍니다.

1. 귀 업소에서는 현재 온천수의 열에너지지를 난방이나 기타 목적에 활용하고 있습니까?
 가) 아니오 ()
 나) 예 ()
 나1) 야드로프레인을 이용해 바닥 난방에 사용하고 있음 ()
 나2) 히트펌프를 이용해 난방(또는 냉/난방)에 활용하고 있음 ()
 나3) 기타 방식 (자세히 기입해주십시오) ()

2. 아래의 예시를 참고하여 필요한 자료를 정확히 기입해주십시오 (2007년도 1년간의 자료).

<table>
<thead>
<tr>
<th>업소명*</th>
<th>소재지*</th>
<th>온천품수*</th>
<th>온천품면*</th>
<th>평균온도</th>
<th>수송량 및 방식</th>
<th>연간가동일수*</th>
<th>연간전력수용량</th>
<th>연간유류비*</th>
</tr>
</thead>
<tbody>
<tr>
<td>온천A</td>
<td>도시(골)면(동/변)</td>
<td>3</td>
<td>2001</td>
<td>3618.11''</td>
<td>128°35'12"</td>
<td>1998.1</td>
<td>2.1</td>
<td>500 m</td>
</tr>
</tbody>
</table>

* 표시한 곳은 필수적으로 기재, 여타 부분은 현재 과학이 가능한 리스트로 기입 (물 모르시면 면책으로 두세요)
1) 현재 가열/난방방식은 경유/LPG/전기로 동 중 하나를 사용하는 것부터 순서대로 기입
2) 연간 전력비는 수송점과 가열비용을 온천업소 내/난방을 포함한 일반정제의 중간비로 지급 금액
3) 연간 유류비는 온천수의 가열에 필요한 유류비 및 온천업소 난방까지 포함한 일반정제의 중간비용
부록 C. 부곡온천지역 온천수 이용 난방시설 점검 사항 조사표 / 조사결과 (18개 업소)

온천수 이용 난방시설 점검 사항

아래 사항을 가능한 한 자세히 조사해주시기 바랍니다.
여러분 부부는 추정값이라도 필요합니다.
시설에 대한 사전작업이 매우 중요합니다 (하행선 것까지 모두 확인)

1. 기준사항
 1-1) 온천업소명과 소재지
 1-2) 조사일시와 조사회
 1-3) 온천수 공급온도
 1-4) 온천수 사용량

2. 기술적 사항
 2-1) 열교환기 사용유무: 열교환기 사용/미사용
 2-2) 난방 공급량: 가구수(이 경우 연면적 등이 포함) 또는
 공급량(m³/day)
 2-3) 난방 공급온도:
 2-4) 연중 난방 공급 기간: ??? 일
 2-5) 난방 단계: 난방 만 사용 또는 난방과 온실 공급으로 단계활용
 2-6) 난방 방식: 바닥 난방 또는 Fan Coil Unit (FCU)
 2-7) 지급까지 활용해온 기간: ??? 년

3. 경제적 사항
 3-1) 설치비:
 3-2) 유지/보수비: 월간 또는 연간
 3-3) 에너지절감률: 난방시설 설치 전/후 전기로 또는 난방비 차이

4. 기타
 4-1) 현재 느끼는 문제점/개선해야 할 점
 4-2) 정부의 지원이 어느정도 있다면 이를 확대 적용할 것인지 또는
 어떤 방식으로 지원이 필요할지 등
온천수 이용 난방시설 현황 파악 1

1. 기본사항
1) 온천업소명: 가고파 호텔
 소재지: 창녕군 부곡면 거문리 220-2번지
2) 조사일시: 2008년 7월 24일
 조사자: 함세영, 송윤호
3) 온천수 용출온도: 67.8℃
4) 온천수 사용량(단위 명시): 13,227 ㎥/년

2. 기술적 사항
1) 열교환기 사용유무: 열교환기(heat pump) 사용/미사용
2) 난방 공급량: 가구수(이 경우 연면적 등이 포함): 총 51 가구(3128.14 ㎡)
 공급량(㎥/년): 약 3,968 ㎥/년(년간 온천수 사용량의 30%)
3) 난방 공급온도: 약 40~45℃
4) 연중 난방 공급 기간: 210 일
5) 난방 단계: 난방 만 시행 또는 난방과 온실(비닐하우스 등) 공급으로 단계활용
6) 난방 방식: 바닥 난방 또는 Fan Coil Unit (FCU)
7) 지금까지 활용해온 기간: 약 26 년

3. 경제적 사항
1) 설치비: 약 3억원
2) 유지/보수비(월간 또는 연간): 500만원/년(동관으로 설치)
3) 에너지절감량: 1억원/년
 (난방시설 설치 전/후 전기료 또는 난방비 차이)

4. 기타
1) 현재 느끼는 문제점/개선해야 할 점
 - 없음.
2) 정부의 지원이 어느 정도 있다면 이를 확대 적용할 것인지?
어떤 방식으로 지원이 필요할지?
- 건물 전체에 이미 온천수를 이용한 난방 시설이 설치되었기 때문에 확대 적용할
계획은 없으며, 지원금이 나온다면 난방 시설의 유지 및 보수비로 활용할 계획임.
온천수 이용 난방시설 사진 - 가고파 호텔

난방배관 설치 상태

각층으로 연결된 난방배관

각층으로 연결된 난방배관

난방배관 개폐장치

난방배관 개폐장치

난방배관의 온도계
온천수 이용 난방시설 현황 파악 2

1. 기본사항

1) 온천업소명: 가든 관광호텔
소재지: 창녕군 부곡면 거문리 221-1번지
2) 조사일시: 2008년 7월 24일
조사자: 함세영, 송윤호
3) 온천수 용출온도: 82℃
4) 온천수 사용량(단위 명시): 8,999㎥/년

2. 기술적 사항

1) 열교환기 사용유무: 열교환기(heat pump) 사용/미사용
2) 난방 공급량: 가구수(이 경우 연면적 등이 포함): 총 84 가구(6297.925 ㎥)
공급량(㎥/년): 약 3,000 ㎥/년(년간 온천수 사용량의 30%)
3) 난방 공급온도: 약 40~45℃(냉수 섞어서 온도조절)
4) 연중 난방 공급 기간: 210 일
5) 난방 단계: 난방 단계
또는 난방과 온실(비닐하우스 등) 공급으로 단계활용
6) 난방 방식: 바닥 난방 또는 Fan Coil Unit (FCU)
7) 지금까지 활용해온 기간: 약 26 년

3. 경제적 사항

1) 설치비: 약 6억원
2) 유지/보수비(월간 또는 연간): 약 3,000만원/년
3) 에너지절감량: 약 1억원/년
 (난방시설 설치 전/후 전기료 또는 난방비 차이)

4. 기타

1) 현재 느끼는 문제점/개선해야 할 점
 - 없음.
2) 정부의 지원이 어느 정도 있다면 이를 확대 적용할 것인지?
어떤 방식으로 지원이 필요한지?
- 난방시설 외 건축물 외관 리모델링
온천수 이용 난방시설 사진 - 가든 관광호텔

난방배관 설치 상태

난방배관 폐프

각층으로 연결된 난방배관

5층으로 연결된 난방배관

객실에 설치된 FCU

객실에 설치된 FCU
온천수 이용 난방시설 현황 파악 3

1. 기본사항
1) 온천업소명: 그랜드 호텔 소재지: 창녕군 부곡면 거문리 217-3번지
2) 조사일시: 2008년 7월 24일 조사자: 함세영, 송윤호
3) 온천수 용출온도: 76℃
4) 온천수 사용량(단위 명시): 57,423 ㎥/년

2. 기술적 사항
1) 열교환기 사용유무: 열교환기(heat pump) 사용/미사용
2) 난방 공급량: 가구수(이 경우 연면적 등이 포함): 총 51 가구(3397.60 ㎡)
 공급량(㎥/년): 약 15,150 ㎥/년(년간 온천수 사용량의 30%)
3) 난방 공급온도: 약 40~45℃
4) 연중 난방 공급 기간: 230 일
5) 난방 단계: 난방만 시행 또는 난방과 온실(비닐하우스 등) 공급으로 단계활용
6) 난방 방식: 바닥 난방 또는 Fan Coil Unit (FCU)
7) 지금까지 활용해온 기간: 약 25 년

3. 경제적 사항
1) 설치비: 약 4억원
2) 유지/보수비(월간 또는 연간): 약 3,000만원/년
3) 에너지절감량: 약 1억원/년
 (난방시설 설치 전/후 전기료 또는 난방비 차이)

4. 기타
1) 현재 느끼는 문제점/개선해야 할 점
 - 유황성분에 의한 파이프 연결부위의 침전물
2) 정부의 지원이 어느 정도 있다면 이를 확대 적용할 것인지?
 어떤 방식으로 지원이 필요할지?
 - 난방시설 유지보수비, 건축물 리모델링
온천수 이용 난방시설 사진 - 그랜드 호텔

<table>
<thead>
<tr>
<th>난방배관 설치 상태</th>
<th>난방배관의 온도계</th>
</tr>
</thead>
<tbody>
<tr>
<td>난방시스템 컨트롤박스</td>
<td>난방시스템 컨트롤박스</td>
</tr>
<tr>
<td>객실에 설치된 난방배관</td>
<td>온천공 제원</td>
</tr>
</tbody>
</table>
온천수 이용 난방시설 현황 파악 4

1. 기본사항
1) 온천업소명: 그린비취 호텔 소재지: 창녕군 부곡면 거문리 217-8번지
2) 조사일시: 2008년 7월 24일 조사자: 함세영, 송윤호
3) 온천수 용출온도: 78℃
4) 온천수 사용량(단위 명시): 14,708 m³/3개월 (3개월간 사용량)

2. 기술적 사항
1) 열교환기 사용유무: 열교환기(heat pump) 사용/미사용
2) 난방 공급량: 가구수(이 경우 연면적 등이 포함): 총 52 가구(4961.13 m²)
 공급량(m³/년): 약 4,950 m³/년(년간 온천수 사용량의 30%)
3) 난방 공급온도: 약 40∼45℃
4) 연중 난방 공급 기간: 250 일
5) 난방 단계: 난방만 시행 또는 난방과 온실(비닐하우스 등) 공급으로 단계활용
6) 난방 방식: 바닥난방 또는 Fan Coil Unit (FCU)
7) 지금까지 활용해온 기간: 약 25 년

3. 경제적 사항
1) 설치비: 약 6억원
2) 유지/보수비(월간 또는 연간): 약 5,000만원/년
3) 에너지절감량: 약 3억원/년
 (난방시설 설치 전/후 전기료 또는 난방비 차이)

4. 기타
1) 현재 느끼는 문제점/개선해야 할 점
 - 유황성분에 의한 파이프 연결부위의 침전물
2) 정부의 지원이 어느 정도 있다면 이를 확대 적용할 것인지?
어떤 방식으로 지원이 필요할지?
- 난방시설 유지보수비, 건축물 리모델링
<table>
<thead>
<tr>
<th>난방배관 펌프 및 온도계</th>
<th>각층으로 연결된 난방배관</th>
</tr>
</thead>
<tbody>
<tr>
<td>객실에 설치된 난방배관</td>
<td>객실에 설치된 난방배관</td>
</tr>
<tr>
<td>객실에 설치된 난방배관</td>
<td>객실에 설치된 난방배관</td>
</tr>
<tr>
<td>객실에 설치된 난방배관</td>
<td>객실에 설치된 난방배관</td>
</tr>
</tbody>
</table>
온천수 이용 난방시설 현황 파악 5

1. 기본사항
 1) 온천업소명: 남양온천 모텔 소재지: 창녕군 부곡면 거문리 224-3번지
 2) 조사일시: 2008년 7월 24일 조사자: 함세영, 송윤호
 3) 온천수 용출온도: 76℃
 4) 온천수 사용량(단위 명시): 7,480㎥/년

2. 기술적 사항
 1) 열교환기 사용유무: 열교환기(heat pump) 사용/미사용
 2) 난방 공급량: 가구수(이 경우 연면적 등이 포함): 총 31 가구(1438.64㎥)
 공급량(㎥/년): 7,480㎥/년(목욕탕이 없는 관계로 100% 사용)
 3) 난방 공급온도: 약 40~45℃
 4) 연중 난방 공급 기간: 240 일
 5) 난방 단계: 난방 만 시행 또는 난방과 온실(비닐하우스 등) 공급으로 단계활용
 6) 난방 방식: 바닥 난방 또는 Fan Coil Unit (FCU)
 7) 지금까지 활용해온 기간: 약 25 년

3. 경제적 사항
 1) 설치비: 약 1억원
 2) 유지/보수비(월간 또는 연간): 약 1,500만원/년
 3) 에너지절감량: 약 5,000만원/년
 (난방시설 설치 전/후 전기료 또는 난방비 차이)

4. 기타
 1) 현재 느끼는 문제점/개선해야 할 점
 - 없음
2) 정부의 지원이 어느 정도 있다면 이를 확대 적용할 것인지?
어떤 방식으로 지원이 필요할지?
- 난방시설 유지보수비, 건축물 리모델링
<table>
<thead>
<tr>
<th>난방배관 설치 상태</th>
<th>각층으로 연결된 난방배관</th>
</tr>
</thead>
<tbody>
<tr>
<td>지하에로 연결된 난방배관</td>
<td>난방배관 설치 상태</td>
</tr>
<tr>
<td>난방배관 설치 상태</td>
<td></td>
</tr>
</tbody>
</table>
온천수 이용 난방시설 현황 파악 6

1. 기본사항
 1) 온천업소명: 대천장
 2) 조사일시: 2008년 7월 24일
 3) 온천수 용출온도: 78℃
 4) 온천수 사용량(단위 명시): 61,945 m³/년

2. 기술적 사항
 1) 열교환기 사용유무: 열교환기(heat pump) 사용/미사용
 2) 난방 공급량: 가구수(이 경우 연면적 등이 포함): 총 59 가구(5948 m²)
 공급량(m³/년): 17,000 m³/년 (년간 온천수 사용량의 30%)
 3) 난방 공급온도: 약 40~45℃
 4) 연중 난방 공급 기간: 240 일
 5) 난방 단계: 난방만 시험 또는 난방과 온실(비닐하우스 등) 공급으로 단계활용
 6) 난방 방식: 바닥 난방 또는 Fan Coil Unit (FCU)
 7) 지금까지 활용해온 기간: 약 26 년

3. 경제적 사항
 1) 설치비: 약 8억원
 2) 유지/보수비(월간 또는 연간): 약 5,000만원/년
 3) 에너지절감량: 약 4억원/년
 (난방시설 설치 전/후 전기료 또는 난방비 차이)

4. 기타
 1) 현재 느끼는 문제점/개선해야 할 점
 - 없음
2) 정부의 지원이 어느 정도 있다면 이를 확대 적용할 것인지?
 어떤 방식으로 지원이 필요하신가요?
 - 난방시설 유지보수비
온천수 이용 난방시설 사진 - 대천장

<table>
<thead>
<tr>
<th>난방배관 설치 상태</th>
<th>각층으로 연결된 난방배관</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>각층으로 연결된 난방배관</td>
<td>난방배관 펌프</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>난방배관 펌프</td>
<td>난방배관 펌프</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
온천수 이용 난방시설 현황 파악 7

1. 기본사항
 1) 온천업소명: 동원장 소재지: 창녕군 부곡면 거문리 213-3번지
 2) 조사일시: 2008년 7월 24일 조사자: 함세영, 송윤호
 3) 온천수 용출온도: 78℃
 4) 온천수 사용량(단위 명시): 39,470 m³/년

2. 기술적 사항
 1) 열교환기 사용유무: 열교환기(heat pump) 사용/미사용
 2) 난방 공급량: 가구수(이 경우 연면적 등이 포함): 총 58 가구(2784.46 m²)
 공급량(m³/년): 12,250 m³/년(년간 온천수 사용량의 30%)
 3) 난방 공급온도: 약 40~45℃
 4) 연중 난방 공급 기간: 240 일
 5) 난방 단계: 난방만 시행 또는 난방과 온실(비닐하우스 등) 공급으로 단계활용
 6) 난방 방식: 바닥 난방 또는 Fan Coil Unit (FCU)
 7) 지금까지 활용해온 기간: 약 33 년

3. 경제적 사항
 1) 설치비: 약 2억 5천만원
 2) 유지/보수비(월간 또는 연간): 약 1,700만원/년
 3) 에너지절감량: 약 7,000만원/년
 (난방시설 설치 전/후 전기료 또는 난방비 차이)

4. 기타
 1) 현재 느끼는 문제점/개선해야 할 점
 - 없음
2) 정부의 지원이 어느 정도 있다면 이를 확대 적용할 것인지?
어떤 방식으로 지원이 필요한지?
- 난방시설 유지보수비
<온천수 이용 난방시설 사진 - 동원장>

<table>
<thead>
<tr>
<th>난방배관 설치 상태</th>
<th>난방배관 설치 상태</th>
</tr>
</thead>
<tbody>
<tr>
<td>각층으로 연결된 난방배관</td>
<td>각층으로 연결된 난방배관</td>
</tr>
</tbody>
</table>
온천수 이용 난방시설 현황 파악 8

1. 기본사항
 1) 온천업소명: (주)레이크힐스 골프텔 소재지: 창녕군 부곡면 거문리 213-19번지
 2) 조사일시: 2008년 7월 24일 조사자: 함세영, 송윤호
 3) 온천수 용출온도: 76~77℃
 4) 온천수 사용량(단위 명시): 35,773㎥/년

2. 기술적 사항
 1) 열교환기 사용유무: 열교환기(heat pump) 사용/미사용
 2) 난방 공급량: 가구수(이 경우 연면적 등이 포함): 총 167 가구(19,280.273 ㎥)
 공급량(㎥/년): 3,577 ㎥/년(년간 온천수 사용량의 10%)
 3) 난방 공급온도: 약 40~45℃
 4) 연중 난방 공급 기간: 30 일(대부분 전기로 난방)
 5) 난방 단계: 난방만 시행 또는 난방과 온실(비닐하우스 등) 공급으로 단계활용
 6) 난방 방식: 바닥난방 또는 Fan Coil Unit (FCU)
 7) 지금까지 활용해온 기간: 약 28 년

3. 경제적 사항
 1) 설치비: 약 10억원
 2) 유지/보수비(월간 또는 연간): 약 1,500만원/년
 3) 에너지절감량: 약 1,000만원/년
 (난방시설 설치 전/후 전기료 또는 난방비 차이)

4. 기타
 1) 현재 느끼는 문제점/개선해야 할 점
 - 없음
2) 정부의 지원이 어느 정도 있다면 이를 확대 적용할 것인지?
어떤 방식으로 지원이 필요한지?
- 난방시설 유지보수비
<온천수 이용 난방시설 사진 - (주)레이크힐스 골프텔>

<table>
<thead>
<tr>
<th>난방배관 설치 상태</th>
<th>난방배관의 온도계</th>
</tr>
</thead>
<tbody>
<tr>
<td>각층으로 연결된 난방배관</td>
<td>각층으로 연결된 난방배관</td>
</tr>
<tr>
<td>12층으로 연결된 난방배관</td>
<td>각층으로 연결된 난방배관</td>
</tr>
</tbody>
</table>
온천수 이용 난방시설 현황 파악

1. 기본사항
1) 온천업소명: 모텔퀸
소재지: 창녕군 부곡면 거문리 223-3번지
2) 조사일시: 2008년 7월 24일
조사자: 함세영, 송윤호
3) 온천수 용출온도: 78℃
4) 온천수 사용량(단위 명시): 13,015 m³/년

2. 기술적 사항
1) 열교환기 사용유무: 열교환기(heat pump) 사용/미사용
2) 난방 공급량: 가구수(이 경우 연면적 등이 포함): 총 38 가구(1,839.9 m²)
 공급량(m³/년): 13,015 m³/년(목욕탕이 없는 관계로 100% 사용)
3) 난방 공급온도: 약 40~45℃
4) 연중 난방 공급 기간: 240 일
5) 난방 단계: 난방만 시행 또는 난방과 온실(비닐하우스 등) 공급으로 단계활용
6) 난방 방식: 바닥 난방 또는 Fan Coil Unit (FCU)
7) 지금까지 활용해온 기간: 약 27 년

3. 경제적 사항
1) 설치비: 약 2억원
2) 유지/보수비(월간 또는 연간): 약 1,500만원/년
3) 에너지절감량: 약 3,000만원/년
 (난방시설 설치 전/후 전기료 또는 난방비 차이)

4. 기타
1) 현재 느끼는 문제점/개선해야 할 점
 - 없음
2) 정부의 지원이 어느 정도 있으면 이를 확대 적용할 것인지?
어떤 방식으로 지원이 필요한지?
- 난방시설 유지보수비
<table>
<thead>
<tr>
<th>난방배관 설치 상태</th>
<th>난방배관 설치 상태</th>
</tr>
</thead>
<tbody>
<tr>
<td>객실에 설치된 난방배관 열개</td>
<td>객실에 설치된 난방배관</td>
</tr>
<tr>
<td>각층으로 연결된 난방배관</td>
<td>각층으로 연결된 난방배관</td>
</tr>
</tbody>
</table>
온천수 이용 난방시설 현황 파악 10

1. 기본사항
1) 온천업소명: 부일온천 모텔 소재지: 창녕군 부곡면 거문리 224-4번지
2) 조사일시: 2008년 7월 24일 조사자: 함세영, 송윤호
3) 온천수 용출온도: 76℃
4) 온천수 사용량(단위 명시): 7,123㎥/년

2. 기술적 사항
1) 열교환기 사용유무: 열교환기(heat pump) 사용/미사용
2) 난방 공급량: 가구수(이 경우 연면적 등이 포함): 총 32 가구(2,173.63㎡)
 공급량(㎥/년): 2,100㎥/년(년간 온천수 사용량의 30%)
3) 난방 공급온도: 약 40~45℃
4) 연중 난방 공급 기간: 240 일
5) 난방 단계: 난방 만 시행 또는 난방과 온실(비닐하우스 등) 공급으로 단계활용
6) 난방 방식: 바닥 난방 또는 Fan Coil Unit (FCU)
7) 지금까지 활용해온 기간: 약 26 년

3. 경제적 사항
1) 설치비: 약 1억 5000만원
2) 유지/보수비(월간 또는 연간): 약 2,000만원/년
3) 에너지절감량: 약 7,000만원/년
 (난방시설 설치 전/후 전기료 또는 난방비 차이)

4. 기타
1) 현재 느끼는 문제점/개선해야 할 점
 - 없음
2) 정부의 지원이 어느 정도 있다면 이를 확대 적용할 것인지?
어떤 방식으로 지원이 필요할지?

- 난방시설 유지보수비, 수중모터교체, 건축물 외관 리모델링
온천수 이용난방시설 사진 - 부일온천 모텔

<table>
<thead>
<tr>
<th>난방배관 설치 상태</th>
<th>난방배관 설치 상태</th>
</tr>
</thead>
<tbody>
<tr>
<td>각층으로 연결된 난방배관</td>
<td>각층으로 연결된 난방배관</td>
</tr>
<tr>
<td>지하로 연결된 난방배관</td>
<td>지하로 연결된 난방배관</td>
</tr>
</tbody>
</table>
온천수 이용 난방시설 현황 파악 11

1. 기본사항
 1) 온천업소명: 신라장
 소재지: 창녕군 부곡면 거문리 215-15번지
 2) 조사일시: 2008년 7월 24일
 조사자: 함세영, 송윤호
 3) 온천수 용출온도: 78℃
 4) 온천수 사용량(단위 명시): 38,086 m³/년

2. 기술적 사항
 1) 열교환기 사용유무: 열교환기(heat pump) 사용/미사용
 2) 난방 공급량: 가구수(이 경우 연면적 등이 포함): 총 72 가구(4,497.93 m²)
 공급량(m³/년): 15,000 m³/년(년간 온천수 사용량의 30%)
 3) 난방 공급온도: 약 40∼45℃
 4) 연중 난방 공급 기간: 240 일
 5) 난방 단계: 난방만 시행 또는 난방과 온실(비닐하우스 등) 공급으로 단계활용
 6) 난방 방식: 바닥 난방 또는 Fan Coil Unit (FCU)
 7) 지금까지 활용해온 기간: 약 25 년

3. 경제적 사항
 1) 설치비: 약 5억원
 2) 유지/보수비(월간 또는 연간): 약 4,500만원/년
 3) 에너지절감량: 약 1억원/년
 (난방시설 설치 전/후 전기료 또는 난방비 차이)

4. 기타
 1) 현재 느끼는 문제점/개선해야 할 점
 - 없음
2) 정부의 지원이 어느 정도 있다면 이를 확대 적용할 것인지?
어떤 방식으로 지원이 필요한지?
- 난방시설 유지보수비, 건축물 외관 리모델링
<table>
<thead>
<tr>
<th>난방배관 설치 상태</th>
<th>각층으로 연결된 난방배관</th>
</tr>
</thead>
<tbody>
<tr>
<td>객실에 설치된 난방배관</td>
<td>객실에 설치된 난방배관</td>
</tr>
<tr>
<td>로비에 설치된 FCU</td>
<td>로비에 설치된 FCU</td>
</tr>
</tbody>
</table>
온천수 이용 난방시설 현황 파악 12

1. 기본사항
1) 온천업소명: 오리온 호텔 소재지: 창녕군 부곡면 거문리 222-10번지
2) 조사일시: 2008년 7월 24일 조사자: 함세영, 송윤호
3) 온천수 용출온도: 78℃
4) 온천수 사용량(단위 명시): 16,938 ㎥/년

2. 기술적 사항
1) 열교환기 사용유무: 열교환기(heat pump) 사용/미사용
2) 난방 공급량: 가구수(이 경우 연면적 등이 포함): 총 60 가구(3,874.82 ㎡)
 공급량(㎥/년): 5,100 ㎥/년(년간 온천수 사용량의 30%)
3) 난방 공급온도: 약 40~45℃
4) 연중 난방 공급 기간: 240 일
5) 난방 단계: 난방만 시행 또는 난방과 온실(비닐하우스 등) 공급으로 단계활용
6) 난방 방식: 바닥 난방 또는 Fan Coil Unit (FCU)
7) 지금까지 활용해온 기간: 약 25 년

3. 경제적 사항
1) 설치비: 약 5억원
2) 유지/보수비(월간 또는 연간): 약 3,000만원/년
3) 에너지절감량: 약 1억원/년
 (난방시설 설치 전/후 전기료 또는 난방비 차이)

4. 기타
1) 현재 느끼는 문제점/개선해야 할 점
 - 없음
2) 정부의 지원이 어느 정도 있으면 이를 확대 적용할 것인지?

어떤 방식으로 지원이 필요할지?

- 난방시설 유지보수비, 건축물 외관 리모델링, 시설물 정부규제 완화
<table>
<thead>
<tr>
<th>난방배관 설치 상태</th>
<th>난방배관 설치 상태</th>
</tr>
</thead>
<tbody>
<tr>
<td>각층으로 연결된 난방배관</td>
<td>옥상에 설치된 난방배관</td>
</tr>
<tr>
<td>옥상으로 연결된 난방배관</td>
<td>각층으로 연결된 난방배관</td>
</tr>
</tbody>
</table>
온천수 이용 난방시설 현황 파악 13

1. 기본사항
 1) 온천업소명: 온천 모텔
 소재지: 창녕군 부곡면 거문리 216-2번지
 2) 조사일시: 2008년 7월 24일
 조사자: 함세영, 송윤호
 3) 온천수 용출온도: 78℃
 4) 온천수 사용량(단위 명시): 29,402.5㎥/년

2. 기술적 사항
 1) 열교환기 사용유무: 열교환기(heat pump) 사용/미사용
 2) 난방 공급량: 가구수(이 경우 연면적 등이 포함): 총 35 가구(2,157.46㎥)
 공급량(㎥/년): 15,100 ㎥/년(년간 온천수 사용량의 30%)
 3) 난방 공급온도: 약 40~45℃
 4) 연중 난방 공급 기간: 240 일
 5) 난방 단계: 난방만 시행 또는 난방과 온실(비닐하우스 등) 공급으로 단계활용
 6) 난방 방식: 바닥 난방 또는 Fan Coil Unit (FCU)
 7) 지금까지 활용해온 기간: 약 24 년

3. 경제적 사항
 1) 설치비: 약 2억원
 2) 유지/보수비(월간 또는 연간): 약 1,000만원/년
 3) 에너지절감량: 약 5,000만원/년
 (난방시설 설치 전/후 전기료 또는 난방비 차이)

4. 기타
 1) 현재 느끼는 문제점/개선해야 할 점
 - 없음
2) 정부의 지원이 어느 정도 있으면 이를 확대 적용할 것인지?
어떤 방식으로 지원이 필요할지?
- 난방시설 유지보수비, 건축물 외관 리모델링
<온천수 이용 난방시설 사진 - 온천 모텔>

<table>
<thead>
<tr>
<th>난방배관 설치 상태</th>
<th>난방배관 설치 상태</th>
</tr>
</thead>
<tbody>
<tr>
<td>저온수 탱크로 연결된 난방배관</td>
<td>각층으로 연결된 난방배관</td>
</tr>
</tbody>
</table>
온천수 이용 난방시설 현황 파악 14

1. 기본사항
 1) 온천업소명: 원탕고운 호텔 소재지: 창녕군 부곡면 거문리 217-11번지
 2) 조사일시: 2008년 7월 24일 조사자: 함세영, 송윤호
 3) 온천수 용출온도: 78℃
 4) 온천수 사용량(단위 명시): 59,040 ㎥/년

2. 기술적 사항
 1) 열교환기 사용유무: 열교환기(heat pump) 사용/미사용
 2) 난방 공급량: 가구수(이 경우 연면적 등이 포함): 총 37 가구(2,838.72 ㎡)
 공급량(㎥/년): 14,200 ㎥/년(년간 온천수 사용량의 30%)
 3) 난방 공급온도: 약 40~45℃
 4) 연중 난방 공급 기간: 240 일
 5) 난방 단계: 난방만 시행 또는 난방과 온실(비닐하우스 등) 공급으로 단계활용
 6) 난방 방식: 바닥 난방 또는 Fan Coil Unit (FCU)
 7) 지금까지 활용했은 기간: 약 12 년

3. 경제적 사항
 1) 설치비: 약 3억원
 2) 유지/보수비(월간 또는 연간): 약 300만원/년
 3) 에너지절감량: 약 5,000만원/년
 (난방시설 설치 전/후 전기료 또는 난방비 차이)

4. 기타
 1) 현재 느끼는 문제점/개선해야 할 점
 - 없음
2) 정부의 지원이 어느 정도 있다면 이를 확대 적용할 것인지?
어떤 방식으로 지원이 필요할지?
- 난방시설 유지보수비, 온천수를 활용한 비닐하우스 보온효과(에너지 절감)
온천수 이용 난방시설 사진 - 원탕고운 호텔

<table>
<thead>
<tr>
<th>난방배관 설치 상태</th>
<th>난방배관펌프</th>
</tr>
</thead>
<tbody>
<tr>
<td>각층으로 연결된 난방배관</td>
<td>각층으로 연결된 난방배관</td>
</tr>
</tbody>
</table>
온천수 이용 난방시설 현황 파악 15

1. 기본사항

1) 온천업소명: 파크관광 호텔 소재지: 창녕군 부곡면 거문리 216-16번지
2) 조사일시: 2008년 7월 24일 조사자: 함세영, 송윤호
3) 온천수 용출온도: 78℃
4) 온천수 사용량(단위 명시): 51,331 m³/년

2. 기술적 사항

1) 열교환기 사용유무: 열교환기(heat pump) 사용/미사용
2) 난방 공급량: 가구수(이 경우 연면적 등이 포함): 총 97 가구(7,114.22 m²)
 공급량(m³/년): 15,600 m³/년(년간 온천수 사용량의 30%)
3) 난방 공급온도: 약 40~45℃
4) 연중 난방 공급 기간: 240 일
5) 난방 단계: 난방만 시행 또는 난방과 온실(비닐하우스 등) 공급으로 단계활용
6) 난방 방식: 바닥 난방 또는 Fan Coil Unit (FCU)
7) 지금까지 활용해온 기간: 약 24 년

3. 경제적 사항

1) 설치비: 약 10억원
2) 유지/보수비(월간 또는 연간): 약 1,800만원/년
3) 에너지절감량: 약 1억원/년
 (난방시설 설치 전/후 전기료 또는 난방비 차이)

4. 기타

1) 현재 느끼는 문제점/개선해야 할 점
 - 없음
2) 정부의 지원이 어느 정도 있다면 이를 확대 적용할 것인지?
어떤 방식으로 지원이 필요할지?
- 난방시설 유지보수비, 건축물 외관 리모델링
온천수 이용 난방시설 사진 - 파크관광 호텔

<table>
<thead>
<tr>
<th>난방배관 설치 상태 및 컨트롤박스</th>
<th>난방배관 설치 상태</th>
</tr>
</thead>
<tbody>
<tr>
<td>각층으로 연결된 난방배관</td>
<td>8.9층으로 연결된 난방배관</td>
</tr>
<tr>
<td>위층으로 연결되는 난방배관</td>
<td>위층으로 연결되는 난방배관</td>
</tr>
</tbody>
</table>
온천수 이용 난방시설 현황 파악

1. 기본사항
 1) 온천업소명: 한성 호텔
 소재지: 창녕군 부곡면 거문리 217-45번지
 2) 조사일시: 2008년 7월 24일
 조사자: 함세영, 송윤호
 3) 온천수 용출온도: 74℃
 4) 온천수 사용량(단위 명시): 34,816㎥/년

2. 기술적 사항
 1) 열교환기 사용유무: 열교환기(heat pump) 사용/미사용
 2) 난방 공급량: 가구수(이 경우 연면적 등이 포함): 총 77 가구(5,722.283 ㎡)
 공급량(㎥/년): 6,800 ㎥/년(년간 온천수 사용량의 20%)
 3) 난방 공급온도: 약 40∼45℃
 4) 연중 난방 공급 기간: 240 일
 5) 난방 단계: 난방 만 시행 또는 난방과 온실(비닐하우스 등) 공급으로 단계활용
 6) 난방 방식: 바닥 난방 또는 Fan Coil Unit (FCU)
 7) 지금까지 활용해온 기간: 약 25 년

3. 경제적 사항
 1) 설치비: 약 2억원
 2) 유지/보수비(월간 또는 연간): 약 1,500만원/년
 3) 에너지절감량: 약 8000만원/년
 (난방시설 설치 전/후 전기료 또는 난방비 차이)

4. 기타
 1) 현재 느끼는 문제점/개선해야 할 점
 - 없음
2) 정부의 지원이 어느 정도 있다면 이를 확대 적용할 것인지?
어떤 방식으로 지원이 필요할지?
- 난방시설 유지보수비, 관광단지 홍보, 외부장식(폭포, 정원등)
<온천수 이용 난방시설 사진 - 한성 호텔>

<table>
<thead>
<tr>
<th>난방배관 설치 상태</th>
<th>난방배관 설치 상태</th>
</tr>
</thead>
<tbody>
<tr>
<td>각층으로 연결된 난방배관</td>
<td>각층으로 연결된 난방배관</td>
</tr>
<tr>
<td>각층으로 연결된 난방배관</td>
<td>고객실 설치된 난방배관</td>
</tr>
</tbody>
</table>
온천수 이용 난방시설 현황 파악 17

1. 기본사항

1) 온천업소명: 현대온천 호텔

소재지: 창녕군 부곡면 거문리 221-3번지

2) 조사일시: 2008년 7월 24일

조사자: 함세영, 송윤호

3) 온천수 용출온도: 74℃

4) 온천수 사용량(단위 명시): 20,275 m³/년

2. 기술적 사항

1) 열교환기 사용유무: 열교환기(heat pump) 사용/미사용

2) 난방 공급량: 가구수(이 경우 연면적 등이 포함): 총 49 가구(2,810.38 m²)

공급량(m³/년): 6,000 m³/년(년간 온천수 사용량의 30%)

3) 난방 공급온도: 약 40∼45℃

4) 연중 난방 공급 기간: 240 일

5) 난방 단계: 난방만 시험 또는 난방과 온실(비닐하우스 등) 공급으로 단계활용

6) 난방 방식: 바닥 난방 또는 Fan Coil Unit (FCU)

7) 지금까지 활용해온 기간: 약 25 년

3. 경제적 사항

1) 설치비: 약 2억 5000만원

2) 유지/보수비(월간 또는 연간): 약 2,000만원/년

3) 에너지절감량: 약 4000만원/년

(난방시설 설치 전/후 전기료 또는 난방비 차이)

4. 기타

1) 현재 느끼는 문제점/개선해야 할 점

- 없음
2) 정부의 지원이 어느 정도 있다면 이를 확대 적용할 것인지?
어떤 방식으로 지원이 필요한지?
- 난방시설 유지보수비, 건축물 외관 리모델링
온천수 이용 난방시설 사진 - 현대온천 호텔

<table>
<thead>
<tr>
<th>난방배관 설치 상태</th>
<th>난방배관 설치 상태</th>
</tr>
</thead>
<tbody>
<tr>
<td>난방배관 개폐장치</td>
<td>각층으로 연결된 난방배관</td>
</tr>
<tr>
<td>객실에 설치된 난방배관</td>
<td></td>
</tr>
</tbody>
</table>
온천수 이용 난방시설 현황 파악

1. 기본사항
1) 온천업소명: 힐튼 호텔
 소재지: 창녕군 부곡면 거문리 216-1번지
2) 조사일시: 2008년 7월 24일
 조사자: 함세영, 송윤호
3) 온천수 용출온도: 74℃
4) 온천수 사용량(단위 명시): 29,400㎥/년

2. 기술적 사항
1) 열교환기 사용유무: 열교환기(heat pump) 사용/미사용
2) 난방 공급량: 가구수(이 경우 연면적 등이 포함): 총 32 가구(2,204.15 ㎡)
 공급량(m³/년): 29,400 ㎥/년(목욕탕이 없는 관계로 100% 사용)
3) 난방 공급온도: 약 40~45℃
4) 연중 난방 공급 기간: 240일
5) 난방 단계: 난방만 시행 또는 난방과 온실(비닐하우스 등) 공급으로 단계활용
6) 난방 방식: 바닥 난방 또는 Fan Coil Unit (FCU)
7) 지금까지 활용해온 기간: 약 25년

3. 경제적 사항
1) 설치비: 약 3억원
2) 유지/보수비(월간 또는 연간): 약 1,000만원/년
3) 에너지절감량: 약 3000만원/년
 (난방시설 설치 전/후 전기료 또는 난방비 차이)

4. 기타
1) 현재 느끼는 문제점/개선해야 할 점
 - 없음
2) 정부의 지원이 어느 정도 있다면 이를 확대 적용할 것인지?
 어떤 방식으로 지원이 필요할지?
 - 난방시설 유지보수비, 건축물 외관 리모델링
힐튼 호텔은 온천 모텔과 같은 온천공을 사용하므로 온천 모텔의 사진을 참조하기 바랍니다.
부록 D. 부곡온천지역 그랜드 호텔

온천수 이용 열교환 난방 시스템 경제성 분석

<table>
<thead>
<tr>
<th>제출처</th>
<th>응량</th>
<th>218 KW</th>
</tr>
</thead>
</table>

1. 그랜드호텔 온천수 이용 열교환 난방시스템 열량 검토

<table>
<thead>
<tr>
<th>구분</th>
<th>온천수 일일허가용량</th>
<th>이용온천수 순간유량</th>
<th>실제온천수 순간유량</th>
<th>난방시설 열원 온도차</th>
<th>난방열원 온도변화</th>
<th>난방가능량</th>
<th>단위면적당부하(Kcal㎡h)</th>
<th>공급가능면적(㎡)</th>
</tr>
</thead>
<tbody>
<tr>
<td>단위</td>
<td>m³/day</td>
<td>m³/day</td>
<td>kg/h</td>
<td>℃</td>
<td>Kcal/h</td>
<td>KW</td>
<td>단위면적당부하(Kcal㎡h)</td>
<td>공급가능면적(㎡)</td>
</tr>
<tr>
<td>숙박시설 기준</td>
<td>150</td>
<td>150</td>
<td>6,250</td>
<td>30</td>
<td>76℃→46℃</td>
<td>187,500.00</td>
<td>218.0</td>
<td>89</td>
</tr>
<tr>
<td>비고</td>
<td>일일허가량의 100%이용</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

주) 단위면적당 부하: 한국지역난방공사 열공급규정 ‘단위연결열부하기준표’ 기준함.
2. 최대부하일 때 총부하량

<table>
<thead>
<tr>
<th>적요</th>
<th>용도</th>
<th>냉방부하 (kcal/hr)</th>
<th>난방부하 (USRT)</th>
<th>난방부하 (kcal/hr)</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>부곡 D. 부곡온천지역 그랜드 호텔</td>
<td>숙박시설 기준</td>
<td>-</td>
<td>-</td>
<td>187,500.00</td>
<td></td>
</tr>
<tr>
<td>소 계</td>
<td></td>
<td>-</td>
<td>-</td>
<td>187,500.00</td>
<td></td>
</tr>
</tbody>
</table>

3. 난방 운전계획

<table>
<thead>
<tr>
<th>시간(hr)</th>
<th>난방부하 (kcal/hr)</th>
<th>적용부하 (kcal/hr)</th>
<th>부하 지수</th>
<th>난방용량 (kcal/hr)</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:00~01:00</td>
<td>187,500</td>
<td>187,500</td>
<td>100%</td>
<td>187,500</td>
<td>열교환기</td>
</tr>
<tr>
<td>01:00~02:00</td>
<td>187,500</td>
<td>187,500</td>
<td>100%</td>
<td>187,500</td>
<td></td>
</tr>
<tr>
<td>02:00~03:00</td>
<td>187,500</td>
<td>187,500</td>
<td>100%</td>
<td>187,500</td>
<td></td>
</tr>
<tr>
<td>03:00~04:00</td>
<td>187,500</td>
<td>187,500</td>
<td>100%</td>
<td>187,500</td>
<td></td>
</tr>
<tr>
<td>04:00~05:00</td>
<td>187,500</td>
<td>187,500</td>
<td>100%</td>
<td>187,500</td>
<td></td>
</tr>
<tr>
<td>05:00~06:00</td>
<td>187,500</td>
<td>187,500</td>
<td>100%</td>
<td>187,500</td>
<td></td>
</tr>
<tr>
<td>06:00~07:00</td>
<td>187,500</td>
<td>187,500</td>
<td>100%</td>
<td>187,500</td>
<td></td>
</tr>
<tr>
<td>07:00~08:00</td>
<td>187,500</td>
<td>187,500</td>
<td>100%</td>
<td>187,500</td>
<td></td>
</tr>
<tr>
<td>08:00~09:00</td>
<td>187,500</td>
<td>187,500</td>
<td>100%</td>
<td>187,500</td>
<td></td>
</tr>
<tr>
<td>09:00~10:00</td>
<td>187,500</td>
<td>187,500</td>
<td>100%</td>
<td>187,500</td>
<td></td>
</tr>
<tr>
<td>10:00~11:00</td>
<td>187,500</td>
<td>187,500</td>
<td>100%</td>
<td>187,500</td>
<td></td>
</tr>
<tr>
<td>11:00~12:00</td>
<td>187,500</td>
<td>187,500</td>
<td>100%</td>
<td>187,500</td>
<td></td>
</tr>
<tr>
<td>12:00~13:00</td>
<td>187,500</td>
<td>187,500</td>
<td>100%</td>
<td>187,500</td>
<td></td>
</tr>
<tr>
<td>13:00~14:00</td>
<td>187,500</td>
<td>187,500</td>
<td>100%</td>
<td>187,500</td>
<td></td>
</tr>
<tr>
<td>14:00~15:00</td>
<td>187,500</td>
<td>187,500</td>
<td>100%</td>
<td>187,500</td>
<td></td>
</tr>
<tr>
<td>15:00~16:00</td>
<td>187,500</td>
<td>187,500</td>
<td>100%</td>
<td>187,500</td>
<td></td>
</tr>
<tr>
<td>16:00~17:00</td>
<td>187,500</td>
<td>187,500</td>
<td>100%</td>
<td>187,500</td>
<td></td>
</tr>
<tr>
<td>17:00~18:00</td>
<td>187,500</td>
<td>187,500</td>
<td>100%</td>
<td>187,500</td>
<td></td>
</tr>
<tr>
<td>18:00~19:00</td>
<td>187,500</td>
<td>187,500</td>
<td>100%</td>
<td>187,500</td>
<td></td>
</tr>
<tr>
<td>19:00~20:00</td>
<td>187,500</td>
<td>187,500</td>
<td>100%</td>
<td>187,500</td>
<td></td>
</tr>
<tr>
<td>20:00~21:00</td>
<td>187,500</td>
<td>187,500</td>
<td>100%</td>
<td>187,500</td>
<td></td>
</tr>
<tr>
<td>21:00~22:00</td>
<td>187,500</td>
<td>187,500</td>
<td>100%</td>
<td>187,500</td>
<td></td>
</tr>
<tr>
<td>22:00~23:00</td>
<td>187,500</td>
<td>187,500</td>
<td>100%</td>
<td>187,500</td>
<td></td>
</tr>
<tr>
<td>23:00~24:00</td>
<td>187,500</td>
<td>187,500</td>
<td>100%</td>
<td>187,500</td>
<td></td>
</tr>
<tr>
<td>합계(kcal)</td>
<td>4,500,000</td>
<td></td>
<td></td>
<td>4,500,000</td>
<td></td>
</tr>
</tbody>
</table>
4. 열교환 난방시스템 용량계산서 (온천수열원)

4.1 설계 조건

4.1.1 건물 일반 개요
① 건물명: 부곡 D. 부곡온천지역 그랜드 호텔
② 위치
③ 연면적
④ 용도

4.1.2 난방부하
187,500 Kcal/HR (218 KW)

4.1.3 방식 결정
열교환 방식 (온천수), 1개소

4.1.4 펌프 선정
① 2ND 순환펌프 선정: 2대(1대 예비)
 - 유량 : 104 lpm ▶ Q= 110 lpm
 - 양정 (H): 10 m
 - 양정 산출

<table>
<thead>
<tr>
<th>구분</th>
<th>압력손실 [mAq]</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1.8</td>
<td>30.0 mmAq/m</td>
</tr>
<tr>
<td>4</td>
<td>0.9</td>
<td>직관부의 50%</td>
</tr>
<tr>
<td>5</td>
<td>0.9</td>
<td>10%</td>
</tr>
<tr>
<td>총압력손실</td>
<td>9.6</td>
<td></td>
</tr>
</tbody>
</table>

- 축동력
 \[= \frac{(0.163 \times \text{양정 (H)} \times \text{유량 (Q)}) \times \text{효율} \times \text{여유율}}{0.4 \times 115} \]
 \[= 0.52 \text{ KW} \] ▶ L=0.93 KW
② 난방수 순환 펌프 선정: 2대 (1대예비)
- 유량 : 104 lpm ► Q= 110 lpm
- 양정 (H): 16 m
- 양정 산출

<table>
<thead>
<tr>
<th>구분</th>
<th>압력손실 [mAq]</th>
<th>비 고</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>히트펌프</td>
<td>10.0</td>
</tr>
<tr>
<td>2</td>
<td>열교환기</td>
<td>3.0</td>
</tr>
<tr>
<td>3</td>
<td>직관부</td>
<td>0.6</td>
</tr>
<tr>
<td>4</td>
<td>곡관부</td>
<td>0.3</td>
</tr>
<tr>
<td>5</td>
<td>여유율</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td>총압력손실</td>
<td>15.3</td>
</tr>
</tbody>
</table>

- 축동력
= (0.163×양정 (H)×유량 (Q))/효율×여유율
= (0.163×16 m × 0.11 m³/min)/0.4×115
= 0.82 KW ► L=1.5 KW

4.2 판형열교환기 선정
- 대수: 1대
- 형식: 판형열교환기
- 용량: 187,500 Kcal/HR

<table>
<thead>
<tr>
<th>구분</th>
<th>난방 순환 (℃)</th>
<th>온천수 (℃)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>유량(lpm)</td>
<td>온도(℃)</td>
</tr>
<tr>
<td></td>
<td>입력</td>
<td>출력</td>
</tr>
<tr>
<td>난방</td>
<td>104</td>
<td>15.0</td>
</tr>
</tbody>
</table>
4.3 장비요약

<table>
<thead>
<tr>
<th>구분</th>
<th>형식</th>
<th>수량</th>
<th>유량</th>
<th>양정</th>
<th>동력</th>
<th>전원</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>난방순환펌프</td>
<td>인라인</td>
<td>2 대 (1대예비)</td>
<td>110 lpm</td>
<td>10 m</td>
<td>0.93 kw</td>
<td>3Φ 380V 60HZ</td>
<td></td>
</tr>
<tr>
<td>냉온수순환펌프</td>
<td>인라인</td>
<td>2 대 (1대예비)</td>
<td>110 lpm</td>
<td>16 m</td>
<td>1.5 kw</td>
<td>3Φ 380V 60HZ</td>
<td></td>
</tr>
<tr>
<td>소비전력함계</td>
<td>심야/일반</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.4 kw</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>하절기</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>동절기</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5. 운전비용 산출근거

5.1 전기요금표

<table>
<thead>
<tr>
<th>구분</th>
<th>일반용전력(갑)</th>
<th>심야전기(열)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>기본요금 (원/kW)</td>
<td>전력량요금(원/Kwh)</td>
</tr>
<tr>
<td></td>
<td>시간대</td>
<td>여름철 (7-8월)</td>
</tr>
<tr>
<td>일반용전력</td>
<td></td>
<td>5,320.0</td>
</tr>
<tr>
<td>고압A 선택(I)</td>
<td></td>
<td>24.0</td>
</tr>
<tr>
<td>요금</td>
<td></td>
<td>5,320.0</td>
</tr>
</tbody>
</table>

5.2 경유 단가

<table>
<thead>
<tr>
<th>구분</th>
<th>경유 단가</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>기본요금 (원/kW)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>시간대</td>
<td>가스 요금(원/lit)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>경유 단가</td>
<td>1,593.9</td>
<td>1,593.9</td>
</tr>
</tbody>
</table>
5.3 가스 단가

<table>
<thead>
<tr>
<th>구분</th>
<th>가스 요금</th>
<th>비 고</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>기본요금</td>
<td></td>
</tr>
<tr>
<td>도시가스</td>
<td>659.6</td>
<td>461.4</td>
</tr>
</tbody>
</table>

6. 온천수 열교환 난방 시스템 연간 운전비

<table>
<thead>
<tr>
<th>구분</th>
<th>일일부하량 (kcal)</th>
<th>사용 일수</th>
<th>월별 부하 지수</th>
<th>월간부하량 (kcal/hr)</th>
<th>단위전력 (kcal/kw)</th>
<th>소비 전력 (kw)</th>
<th>단가 (원/kw)</th>
<th>운전비 (원)</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>1월</td>
<td>4,500,000</td>
<td>31</td>
<td>100%</td>
<td>139,500,000</td>
<td>77,721</td>
<td>1,795</td>
<td>67.6</td>
<td>121,334</td>
<td></td>
</tr>
<tr>
<td>2월</td>
<td>4,500,000</td>
<td>28</td>
<td>100%</td>
<td>126,000,000</td>
<td>77,721</td>
<td>1,621</td>
<td>67.6</td>
<td>109,592</td>
<td></td>
</tr>
<tr>
<td>3월</td>
<td>4,500,000</td>
<td>31</td>
<td>100%</td>
<td>139,500,000</td>
<td>77,721</td>
<td>1,795</td>
<td>60.7</td>
<td>108,950</td>
<td></td>
</tr>
<tr>
<td>4월</td>
<td>4,500,000</td>
<td>30</td>
<td>100%</td>
<td>135,000,000</td>
<td>77,721</td>
<td>1,737</td>
<td>60.7</td>
<td>105,435</td>
<td></td>
</tr>
<tr>
<td>5월</td>
<td>4,500,000</td>
<td>31</td>
<td>100%</td>
<td>139,500,000</td>
<td>77,721</td>
<td>1,795</td>
<td>60.7</td>
<td>108,950</td>
<td></td>
</tr>
<tr>
<td>6월</td>
<td>4,500,000</td>
<td>30</td>
<td>-</td>
<td>77,721</td>
<td>-</td>
<td>-</td>
<td>60.7</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>7월</td>
<td>4,500,000</td>
<td>31</td>
<td>-</td>
<td>77,721</td>
<td>-</td>
<td>-</td>
<td>91.0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>8월</td>
<td>4,500,000</td>
<td>31</td>
<td>-</td>
<td>77,721</td>
<td>-</td>
<td>-</td>
<td>91.0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>9월</td>
<td>4,500,000</td>
<td>30</td>
<td>100%</td>
<td>135,000,000</td>
<td>77,721</td>
<td>1,737</td>
<td>60.7</td>
<td>105,435</td>
<td></td>
</tr>
<tr>
<td>10월</td>
<td>4,500,000</td>
<td>31</td>
<td>100%</td>
<td>139,500,000</td>
<td>77,721</td>
<td>1,795</td>
<td>60.7</td>
<td>108,950</td>
<td></td>
</tr>
<tr>
<td>11월</td>
<td>4,500,000</td>
<td>30</td>
<td>100%</td>
<td>135,000,000</td>
<td>77,721</td>
<td>1,737</td>
<td>67.6</td>
<td>117,420</td>
<td></td>
</tr>
<tr>
<td>12월</td>
<td>4,500,000</td>
<td>31</td>
<td>100%</td>
<td>139,500,000</td>
<td>77,721</td>
<td>1,795</td>
<td>67.6</td>
<td>121,334</td>
<td></td>
</tr>
<tr>
<td>계</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,007,400</td>
<td></td>
</tr>
<tr>
<td>기본요금</td>
<td>계약전력 X 5,320원 X 12 개월</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>154,013</td>
<td></td>
</tr>
<tr>
<td>합계</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,161,413</td>
<td></td>
</tr>
<tr>
<td>전력산업기반기금</td>
<td>4.591%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>53,320</td>
<td></td>
</tr>
<tr>
<td>지열시스템운전비</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,060,721</td>
<td></td>
</tr>
</tbody>
</table>
7. 경유보일러 운전비

<table>
<thead>
<tr>
<th>구분</th>
<th>일일부하량 (kcal/day)</th>
<th>사용일수</th>
<th>월별부하지수</th>
<th>일간부하량 (kcal/month)</th>
<th>경유저위발열량 (Kcal/ℓ)</th>
<th>경유소비량 (Kcal/ℓ)</th>
<th>단가 (원/ℓ)</th>
<th>효율</th>
<th>운전비 (원)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1월</td>
<td>4,500,000</td>
<td>31</td>
<td>100%</td>
<td>139,500,000</td>
<td>8,450</td>
<td>16,509</td>
<td>1,593.93</td>
<td>90%</td>
<td>29,237,769</td>
</tr>
<tr>
<td>2월</td>
<td>4,500,000</td>
<td>28</td>
<td>100%</td>
<td>126,000,000</td>
<td>8,450</td>
<td>14,911</td>
<td>1,593.93</td>
<td>90%</td>
<td>26,408,308</td>
</tr>
<tr>
<td>3월</td>
<td>4,500,000</td>
<td>31</td>
<td>100%</td>
<td>139,500,000</td>
<td>8,450</td>
<td>16,509</td>
<td>1,593.93</td>
<td>90%</td>
<td>29,237,769</td>
</tr>
<tr>
<td>4월</td>
<td>4,500,000</td>
<td>30</td>
<td>100%</td>
<td>135,000,000</td>
<td>8,450</td>
<td>15,976</td>
<td>1,593.93</td>
<td>90%</td>
<td>28,294,615</td>
</tr>
<tr>
<td>5월</td>
<td>4,500,000</td>
<td>31</td>
<td>100%</td>
<td>139,500,000</td>
<td>8,450</td>
<td>16,509</td>
<td>1,593.93</td>
<td>90%</td>
<td>29,237,769</td>
</tr>
<tr>
<td>6월</td>
<td>4,500,000</td>
<td>30</td>
<td>0%</td>
<td>-</td>
<td>8,450</td>
<td>-</td>
<td>1,593.93</td>
<td>90%</td>
<td>-</td>
</tr>
<tr>
<td>7월</td>
<td>4,500,000</td>
<td>31</td>
<td>0%</td>
<td>-</td>
<td>8,450</td>
<td>-</td>
<td>1,593.93</td>
<td>90%</td>
<td>-</td>
</tr>
<tr>
<td>8월</td>
<td>4,500,000</td>
<td>31</td>
<td>0%</td>
<td>-</td>
<td>8,450</td>
<td>-</td>
<td>1,593.93</td>
<td>90%</td>
<td>-</td>
</tr>
<tr>
<td>9월</td>
<td>4,500,000</td>
<td>30</td>
<td>100%</td>
<td>135,000,000</td>
<td>8,450</td>
<td>15,976</td>
<td>1,593.93</td>
<td>90%</td>
<td>28,294,615</td>
</tr>
<tr>
<td>10월</td>
<td>4,500,000</td>
<td>31</td>
<td>100%</td>
<td>139,500,000</td>
<td>8,450</td>
<td>16,509</td>
<td>1,593.93</td>
<td>90%</td>
<td>29,237,769</td>
</tr>
<tr>
<td>11월</td>
<td>4,500,000</td>
<td>30</td>
<td>100%</td>
<td>135,000,000</td>
<td>8,450</td>
<td>15,976</td>
<td>1,593.93</td>
<td>90%</td>
<td>28,294,615</td>
</tr>
<tr>
<td>12월</td>
<td>4,500,000</td>
<td>31</td>
<td>100%</td>
<td>139,500,000</td>
<td>8,450</td>
<td>16,509</td>
<td>1,593.93</td>
<td>90%</td>
<td>29,237,769</td>
</tr>
<tr>
<td>계</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>257,481,000</td>
</tr>
</tbody>
</table>

비고: 난방
8. 가스보일러 운전비

<table>
<thead>
<tr>
<th>구분</th>
<th>일일부하량 (kcal/day)</th>
<th>사용일수</th>
<th>월별부지수</th>
<th>월간부하량 (kcal/month)</th>
<th>LNG저위발열량 (Kcal/Nm³)</th>
<th>LNG소비량 (Kcal/Nm³)</th>
<th>단가 (원/Nm³)</th>
<th>효율</th>
<th>운전비 (원)</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>1월</td>
<td>4,500,000</td>
<td>31</td>
<td>100%</td>
<td>139,500,000</td>
<td>9,550</td>
<td>14,607</td>
<td>659.59</td>
<td>95%</td>
<td>10,141,946</td>
<td></td>
</tr>
<tr>
<td>2월</td>
<td>4,500,000</td>
<td>28</td>
<td>100%</td>
<td>126,000,000</td>
<td>9,550</td>
<td>13,194</td>
<td>659.59</td>
<td>95%</td>
<td>9,160,467</td>
<td>난방</td>
</tr>
<tr>
<td>3월</td>
<td>4,500,000</td>
<td>31</td>
<td>100%</td>
<td>139,500,000</td>
<td>9,550</td>
<td>14,607</td>
<td>659.59</td>
<td>95%</td>
<td>10,141,946</td>
<td></td>
</tr>
<tr>
<td>4월</td>
<td>4,500,000</td>
<td>30</td>
<td>100%</td>
<td>135,000,000</td>
<td>9,550</td>
<td>14,136</td>
<td>659.59</td>
<td>95%</td>
<td>9,814,786</td>
<td></td>
</tr>
<tr>
<td>5월</td>
<td>4,500,000</td>
<td>31</td>
<td>100%</td>
<td>139,500,000</td>
<td>9,550</td>
<td>14,607</td>
<td>659.59</td>
<td>95%</td>
<td>10,141,946</td>
<td></td>
</tr>
<tr>
<td>6월</td>
<td>4,500,000</td>
<td>30</td>
<td>0%</td>
<td>-</td>
<td>9,550</td>
<td>-</td>
<td>659.59</td>
<td>95%</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>7월</td>
<td>4,500,000</td>
<td>31</td>
<td>0%</td>
<td>-</td>
<td>9,550</td>
<td>-</td>
<td>659.59</td>
<td>95%</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>8월</td>
<td>4,500,000</td>
<td>31</td>
<td>0%</td>
<td>-</td>
<td>9,550</td>
<td>-</td>
<td>659.59</td>
<td>95%</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>9월</td>
<td>4,500,000</td>
<td>30</td>
<td>100%</td>
<td>135,000,000</td>
<td>9,550</td>
<td>14,136</td>
<td>659.59</td>
<td>95%</td>
<td>9,814,786</td>
<td></td>
</tr>
<tr>
<td>10월</td>
<td>4,500,000</td>
<td>31</td>
<td>100%</td>
<td>139,500,000</td>
<td>9,550</td>
<td>14,607</td>
<td>659.59</td>
<td>95%</td>
<td>10,141,946</td>
<td></td>
</tr>
<tr>
<td>11월</td>
<td>4,500,000</td>
<td>30</td>
<td>100%</td>
<td>135,000,000</td>
<td>9,550</td>
<td>14,136</td>
<td>659.59</td>
<td>95%</td>
<td>9,814,786</td>
<td></td>
</tr>
<tr>
<td>12월</td>
<td>4,500,000</td>
<td>31</td>
<td>100%</td>
<td>139,500,000</td>
<td>9,550</td>
<td>14,607</td>
<td>659.59</td>
<td>95%</td>
<td>10,141,946</td>
<td></td>
</tr>
<tr>
<td>계</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>89,314,557</td>
<td></td>
</tr>
</tbody>
</table>
9. 부록 D. 부곡온천지역 그랜드 호텔 온천수 이용 열교환 난방시스템 투자비 산정

<table>
<thead>
<tr>
<th>Item</th>
<th>열량</th>
<th>열교환기</th>
<th>기계설비관공사</th>
<th>자동제어</th>
<th>순환펌프</th>
<th>합계</th>
</tr>
</thead>
<tbody>
<tr>
<td>숙박시설 기준</td>
<td>218KW</td>
<td>3,000</td>
<td>7,500</td>
<td>7,000</td>
<td>8,000</td>
<td>25,500</td>
</tr>
</tbody>
</table>

Remark

※열교환기 재질은 SUS316L이며, 염분이 함유되었을 경우 부식의 우려가 있음.
※위 금액은 대략치이며, 설계시 정확한 사양으로 인한 금액변동이 발생함.

10. 경제성 검토

<table>
<thead>
<tr>
<th>구 분</th>
<th>온천수 열교환 난방 시스템</th>
<th>경유보일러</th>
<th>가스 보일러</th>
<th>비 고</th>
</tr>
</thead>
<tbody>
<tr>
<td>예상 설비비</td>
<td>25,500</td>
<td>3,256</td>
<td>4,138</td>
<td></td>
</tr>
<tr>
<td>정부보조지원금</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>한전무상지원금</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>설투자비</td>
<td>25,500</td>
<td>3,256</td>
<td>4,138</td>
<td></td>
</tr>
<tr>
<td>년간 운전비</td>
<td>1,061</td>
<td>257,481</td>
<td>89,315</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>경유 보일러</th>
<th>가스 보일러</th>
</tr>
</thead>
<tbody>
<tr>
<td>투자 비 차액</td>
<td>22,244</td>
<td>21,362</td>
</tr>
<tr>
<td>년간 운전비차액</td>
<td>256,420</td>
<td>88,254</td>
</tr>
<tr>
<td>투자 회수기간</td>
<td>0.087</td>
<td>0.242</td>
</tr>
</tbody>
</table>

※ 경유 및 가스보일러 단가는 사단법인 한국물가정보 제공 자료를 기준으로 하였음.
부록 E. (주)レイク힐스 골프텔

온천수 이용 열교환 난방시스템 경제성 분석

<table>
<thead>
<tr>
<th>제출처</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>용량</td>
<td>669 KW</td>
</tr>
</tbody>
</table>

1. 부록 E. (주)レイク힐스 골프텔 온천수 이용 열교환 난방시스템 열량 검토

<table>
<thead>
<tr>
<th>구분</th>
<th>온천수</th>
<th>일일허가용량</th>
<th>이용 온천수 유량</th>
<th>실제 온천수 순간 유량</th>
<th>난방시설 열원온도변화</th>
<th>난방열원열능량</th>
<th>단위면적당 부하(kcal/㎡h)</th>
<th>공급가능면적(㎡)</th>
</tr>
</thead>
<tbody>
<tr>
<td>단위</td>
<td>m³/day</td>
<td>m³/day</td>
<td>kg/h</td>
<td>℃</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>숙박시설 기준</td>
<td>460</td>
<td>460</td>
<td>19,167</td>
<td>30</td>
<td>76℃→46℃</td>
<td>575,000.00</td>
<td>669.00</td>
<td>89</td>
</tr>
<tr>
<td>비고</td>
<td>일일허가량의 100%이용</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

주) 단위면적당 부하: 한국지역난방공사 열공급규정 '단위면적열부하기준표' 기준함.
2. 최대부하일 때 총부하량

<table>
<thead>
<tr>
<th>적요</th>
<th>용도</th>
<th>냉방부하 (kcal/hr)</th>
<th>난방부하 (USRT)</th>
<th>난방부하 (kcal/hr)</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>부록 E. 레이크 홀스골프텔 숙박시설 기준</td>
<td>-</td>
<td>-</td>
<td>575,000.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>소 계</td>
<td>-</td>
<td>-</td>
<td>575,000.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. 난방 운전 계획

<table>
<thead>
<tr>
<th>시간(hr)</th>
<th>난방부하 (kcal/hr)</th>
<th>적용부하 (kcal/hr)</th>
<th>부하지수</th>
<th>난방용량 (kcal/hr)</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:00~01:00</td>
<td>575,000</td>
<td>575,000</td>
<td>100%</td>
<td>575,000</td>
<td>열교환기</td>
</tr>
<tr>
<td>01:00~02:00</td>
<td>575,000</td>
<td>575,000</td>
<td>100%</td>
<td>575,000</td>
<td></td>
</tr>
<tr>
<td>02:00~03:00</td>
<td>575,000</td>
<td>575,000</td>
<td>100%</td>
<td>575,000</td>
<td></td>
</tr>
<tr>
<td>03:00~04:00</td>
<td>575,000</td>
<td>575,000</td>
<td>100%</td>
<td>575,000</td>
<td></td>
</tr>
<tr>
<td>04:00~05:00</td>
<td>575,000</td>
<td>575,000</td>
<td>100%</td>
<td>575,000</td>
<td></td>
</tr>
<tr>
<td>05:00~06:00</td>
<td>575,000</td>
<td>575,000</td>
<td>100%</td>
<td>575,000</td>
<td></td>
</tr>
<tr>
<td>06:00~07:00</td>
<td>575,000</td>
<td>575,000</td>
<td>100%</td>
<td>575,000</td>
<td></td>
</tr>
<tr>
<td>07:00~08:00</td>
<td>575,000</td>
<td>575,000</td>
<td>100%</td>
<td>575,000</td>
<td></td>
</tr>
<tr>
<td>08:00~09:00</td>
<td>575,000</td>
<td>575,000</td>
<td>100%</td>
<td>575,000</td>
<td></td>
</tr>
<tr>
<td>09:00~10:00</td>
<td>575,000</td>
<td>575,000</td>
<td>100%</td>
<td>575,000</td>
<td></td>
</tr>
<tr>
<td>10:00~11:00</td>
<td>575,000</td>
<td>575,000</td>
<td>100%</td>
<td>575,000</td>
<td></td>
</tr>
<tr>
<td>11:00~12:00</td>
<td>575,000</td>
<td>575,000</td>
<td>100%</td>
<td>575,000</td>
<td></td>
</tr>
<tr>
<td>12:00~13:00</td>
<td>575,000</td>
<td>575,000</td>
<td>100%</td>
<td>575,000</td>
<td></td>
</tr>
<tr>
<td>13:00~14:00</td>
<td>575,000</td>
<td>575,000</td>
<td>100%</td>
<td>575,000</td>
<td></td>
</tr>
<tr>
<td>14:00~15:00</td>
<td>575,000</td>
<td>575,000</td>
<td>100%</td>
<td>575,000</td>
<td></td>
</tr>
<tr>
<td>15:00~16:00</td>
<td>575,000</td>
<td>575,000</td>
<td>100%</td>
<td>575,000</td>
<td></td>
</tr>
<tr>
<td>16:00~17:00</td>
<td>575,000</td>
<td>575,000</td>
<td>100%</td>
<td>575,000</td>
<td></td>
</tr>
<tr>
<td>17:00~18:00</td>
<td>575,000</td>
<td>575,000</td>
<td>100%</td>
<td>575,000</td>
<td></td>
</tr>
<tr>
<td>18:00~19:00</td>
<td>575,000</td>
<td>575,000</td>
<td>100%</td>
<td>575,000</td>
<td></td>
</tr>
<tr>
<td>19:00~20:00</td>
<td>575,000</td>
<td>575,000</td>
<td>100%</td>
<td>575,000</td>
<td></td>
</tr>
<tr>
<td>20:00~21:00</td>
<td>575,000</td>
<td>575,000</td>
<td>100%</td>
<td>575,000</td>
<td></td>
</tr>
<tr>
<td>21:00~22:00</td>
<td>575,000</td>
<td>575,000</td>
<td>100%</td>
<td>575,000</td>
<td></td>
</tr>
<tr>
<td>22:00~23:00</td>
<td>575,000</td>
<td>575,000</td>
<td>100%</td>
<td>575,000</td>
<td></td>
</tr>
<tr>
<td>23:00~24:00</td>
<td>575,000</td>
<td>575,000</td>
<td>100%</td>
<td>575,000</td>
<td></td>
</tr>
<tr>
<td>합계(kcal)</td>
<td>13,800,000</td>
<td>13,800,000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4. 열교환 난방시스템 용량계산서 (온천수열원)

4.1 설계 조건

4.1.1 건물 일반 개요
① 건물명: 부록 E. (주)레이트힐스 골프텔
② 위치
③ 연면적
④ 용도

4.1.2 난방부하
575,000 Kcal/HR (669 KW)

4.1.3 방식 결정
열교환기 방식 (온천수), 1개소

4.1.4 펌프 선정
① 2ND 순환펌프 선정: 2대(1대 예비)
- 유량: 319 lpm ➤ Q= 320 lpm
- 양정 (H): 10 m
- 양정 산출

<table>
<thead>
<tr>
<th>구분</th>
<th>압력손실 [mAq]</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>히트펌프</td>
<td>3.0</td>
</tr>
<tr>
<td>2</td>
<td>열교환기</td>
<td>3.0</td>
</tr>
<tr>
<td>3</td>
<td>직관부</td>
<td>1.8</td>
</tr>
<tr>
<td>4</td>
<td>곡관부</td>
<td>0.9</td>
</tr>
<tr>
<td>5</td>
<td>여유율</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td>총압력손실</td>
<td>9.6</td>
</tr>
</tbody>
</table>

- 축동력
= (0.163×양정 (H)×유량 (Q))/효율×여유율
= (0.163×10 m×0.32 m³/min)/0.4×115
= 1.50 KW ➤ L=2.70 KW
② 난방수 순환 펌프 선정: 2대 (1대예비)

- 유량: 319 lpm \(\Rightarrow\) Q= 320 lpm
- 양정 (H): 16 m
- 양정 산출

<table>
<thead>
<tr>
<th>구분</th>
<th>압력손실 [mAq]</th>
<th>비 고</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>히트펌프</td>
<td>10.0</td>
</tr>
<tr>
<td>2</td>
<td>열교환기</td>
<td>3.0</td>
</tr>
<tr>
<td>3</td>
<td>직관부</td>
<td>0.6</td>
</tr>
<tr>
<td>4</td>
<td>곡관부</td>
<td>0.3</td>
</tr>
<tr>
<td>5</td>
<td>여유율</td>
<td>1.4</td>
</tr>
<tr>
<td>총합압력손실</td>
<td>15.3</td>
<td></td>
</tr>
</tbody>
</table>

- 축동력

\[
= (0.163 \times \text{양정 (H)} \times \text{유량 (Q)}) / \text{효율} \times \text{여유율} \\
= (0.163 \times 16 \times 0.11 \text{ m}^3/\min)/0.4 \times 1.15 \\
= 2.40 \text{ KW} \Rightarrow L=4.3 \text{ KW}
\]

4.2 관형열교환기 선정

- 대수: 1대
- 형식: 관형열교환기
- 용량: 575,000 Kcal/HR

<table>
<thead>
<tr>
<th>구분</th>
<th>난방 순환 (℃)</th>
<th>온천수 (℃)</th>
<th>비 고</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>유량(lpm)</td>
<td>온도(℃)</td>
<td>유량(lpm)</td>
</tr>
<tr>
<td></td>
<td>입구</td>
<td>출력</td>
<td>입구</td>
</tr>
<tr>
<td>난방</td>
<td>319</td>
<td>15.0</td>
<td>45.0</td>
</tr>
</tbody>
</table>
4.3 장비요약

<table>
<thead>
<tr>
<th>구분</th>
<th>형식</th>
<th>수량</th>
<th>유량</th>
<th>양정</th>
<th>동력</th>
<th>전원</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>난방순환펌프</td>
<td>인라인</td>
<td>2 대</td>
<td>320 lpm</td>
<td>10 m</td>
<td>2.70 kw</td>
<td>3Ф 380V 60HZ</td>
<td></td>
</tr>
<tr>
<td>냉온수순환펌프</td>
<td>인라인</td>
<td>2 대</td>
<td>320 lpm</td>
<td>16 m</td>
<td>4.30 kw</td>
<td>3Ф 380V 60HZ</td>
<td></td>
</tr>
<tr>
<td>소비전력합계</td>
<td>심야/일반</td>
<td></td>
<td></td>
<td></td>
<td>7.00 kw</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5. 운전비용 산출근거

5.1 전기요금표

<table>
<thead>
<tr>
<th>구분</th>
<th>일반용전력(갑)</th>
<th>심야전기(임)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>기본요금(원/kW)</td>
<td>전력량요금(원/KWh)</td>
</tr>
<tr>
<td></td>
<td>시간대</td>
<td></td>
</tr>
<tr>
<td></td>
<td>여름철 (7월)</td>
<td>겨울철 (3월)</td>
</tr>
<tr>
<td>일반용전력고압A선택(I)요금</td>
<td>5,320.0</td>
<td>24.0</td>
</tr>
<tr>
<td></td>
<td>심야동절기</td>
<td>52.1</td>
</tr>
</tbody>
</table>

5.2 경유 단가

<table>
<thead>
<tr>
<th>구분</th>
<th>경유 단가</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>기본요금(원/lit)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>시간대</td>
<td>난방</td>
</tr>
<tr>
<td>경유 단가</td>
<td>1,593.9</td>
<td>1,593.9</td>
</tr>
</tbody>
</table>
5.3 가스 단가

<table>
<thead>
<tr>
<th>구분</th>
<th>가스 요금</th>
<th>시 간</th>
<th>가스 요금 (원/m³)</th>
<th>비 고</th>
</tr>
</thead>
<tbody>
<tr>
<td>도시가스</td>
<td></td>
<td></td>
<td>659.6</td>
<td>461.4</td>
</tr>
</tbody>
</table>

6. 온천수 열교환 난방 시스템 연간 운전비

<table>
<thead>
<tr>
<th>구분</th>
<th>일일부하량 (kcal)</th>
<th>사용 일수</th>
<th>일변 부하 지수</th>
<th>일간부하량 (kca/hr)</th>
<th>단위전력 (kcal/kg)</th>
<th>소비 전력 (kw)</th>
<th>단가 (원/kw)</th>
<th>운전비 (원)</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>1월</td>
<td>13,800,000</td>
<td>31</td>
<td>100%</td>
<td>427,800,000</td>
<td>81,931</td>
<td>5,221</td>
<td>67.6</td>
<td>352,973</td>
<td>난방</td>
</tr>
<tr>
<td>2월</td>
<td>13,800,000</td>
<td>28</td>
<td>100%</td>
<td>386,400,000</td>
<td>81,931</td>
<td>4,716</td>
<td>67.6</td>
<td>318,814</td>
<td></td>
</tr>
<tr>
<td>3월</td>
<td>13,800,000</td>
<td>31</td>
<td>100%</td>
<td>427,800,000</td>
<td>81,931</td>
<td>5,221</td>
<td>60.7</td>
<td>316,944</td>
<td></td>
</tr>
<tr>
<td>4월</td>
<td>13,800,000</td>
<td>30</td>
<td>100%</td>
<td>414,000,000</td>
<td>81,931</td>
<td>5,053</td>
<td>60.7</td>
<td>306,720</td>
<td></td>
</tr>
<tr>
<td>5월</td>
<td>13,800,000</td>
<td>31</td>
<td>100%</td>
<td>427,800,000</td>
<td>81,931</td>
<td>5,221</td>
<td>60.7</td>
<td>316,944</td>
<td></td>
</tr>
<tr>
<td>6월</td>
<td>13,800,000</td>
<td>30</td>
<td>-</td>
<td>81,931</td>
<td>-</td>
<td>60.7</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>7월</td>
<td>13,800,000</td>
<td>31</td>
<td>-</td>
<td>81,931</td>
<td>-</td>
<td>91.0</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>8월</td>
<td>13,800,000</td>
<td>31</td>
<td>-</td>
<td>81,931</td>
<td>-</td>
<td>91.0</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>9월</td>
<td>13,800,000</td>
<td>30</td>
<td>100%</td>
<td>414,000,000</td>
<td>81,931</td>
<td>5,053</td>
<td>60.7</td>
<td>306,720</td>
<td></td>
</tr>
<tr>
<td>10월</td>
<td>13,800,000</td>
<td>31</td>
<td>100%</td>
<td>427,800,000</td>
<td>81,931</td>
<td>5,221</td>
<td>60.7</td>
<td>316,944</td>
<td></td>
</tr>
<tr>
<td>11월</td>
<td>13,800,000</td>
<td>30</td>
<td>100%</td>
<td>414,000,000</td>
<td>81,931</td>
<td>5,053</td>
<td>67.6</td>
<td>341,586</td>
<td></td>
</tr>
<tr>
<td>12월</td>
<td>13,800,000</td>
<td>31</td>
<td>100%</td>
<td>427,800,000</td>
<td>81,931</td>
<td>5,221</td>
<td>67.6</td>
<td>352,973</td>
<td></td>
</tr>
</tbody>
</table>

계 평균 2,930,619

기본요금 계약전력 X 5,320 원 X 12 개월 448,037
합계 3,378,656
전력산업기반기금 4.591% 155,114
지열시스템운전비 3,085,733
경유보일러 운전비

<table>
<thead>
<tr>
<th>구분</th>
<th>일일부하량 (kcal/day)</th>
<th>사용일수</th>
<th>월별부하지수</th>
<th>월간부하량 (kcal/month)</th>
<th>경유저위발열량 (Kcal/ℓ)</th>
<th>경유소비량 (Kcal/ℓ)</th>
<th>단가 (원/ℓ)</th>
<th>효율</th>
<th>운전비 (원)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1월</td>
<td>13,800,000</td>
<td>31</td>
<td>100%</td>
<td>427,800,000</td>
<td>8,450</td>
<td>50,627</td>
<td>1,593.93</td>
<td>90%</td>
<td>89,662,492</td>
</tr>
<tr>
<td>2월</td>
<td>13,800,000</td>
<td>28</td>
<td>100%</td>
<td>386,400,000</td>
<td>8,450</td>
<td>45,728</td>
<td>1,593.93</td>
<td>90%</td>
<td>80,985,477</td>
</tr>
<tr>
<td>3월</td>
<td>13,800,000</td>
<td>31</td>
<td>100%</td>
<td>427,800,000</td>
<td>8,450</td>
<td>50,627</td>
<td>1,593.93</td>
<td>90%</td>
<td>89,662,492</td>
</tr>
<tr>
<td>4월</td>
<td>13,800,000</td>
<td>30</td>
<td>100%</td>
<td>414,000,000</td>
<td>8,450</td>
<td>48,994</td>
<td>1,593.93</td>
<td>90%</td>
<td>86,770,154</td>
</tr>
<tr>
<td>5월</td>
<td>13,800,000</td>
<td>31</td>
<td>100%</td>
<td>427,800,000</td>
<td>8,450</td>
<td>50,627</td>
<td>1,593.93</td>
<td>90%</td>
<td>89,662,492</td>
</tr>
<tr>
<td>6월</td>
<td>13,800,000</td>
<td>30</td>
<td>0%</td>
<td>-</td>
<td>8,450</td>
<td>-</td>
<td>1,593.93</td>
<td>90%</td>
<td>-</td>
</tr>
<tr>
<td>7월</td>
<td>13,800,000</td>
<td>31</td>
<td>0%</td>
<td>-</td>
<td>8,450</td>
<td>-</td>
<td>1,593.93</td>
<td>90%</td>
<td>-</td>
</tr>
<tr>
<td>8월</td>
<td>13,800,000</td>
<td>31</td>
<td>0%</td>
<td>-</td>
<td>8,450</td>
<td>-</td>
<td>1,593.93</td>
<td>90%</td>
<td>-</td>
</tr>
<tr>
<td>9월</td>
<td>13,800,000</td>
<td>30</td>
<td>100%</td>
<td>414,000,000</td>
<td>8,450</td>
<td>48,994</td>
<td>1,593.93</td>
<td>90%</td>
<td>86,770,154</td>
</tr>
<tr>
<td>10월</td>
<td>13,800,000</td>
<td>31</td>
<td>100%</td>
<td>427,800,000</td>
<td>8,450</td>
<td>50,627</td>
<td>1,593.93</td>
<td>90%</td>
<td>89,662,492</td>
</tr>
<tr>
<td>11월</td>
<td>13,800,000</td>
<td>30</td>
<td>100%</td>
<td>414,000,000</td>
<td>8,450</td>
<td>48,994</td>
<td>1,593.93</td>
<td>90%</td>
<td>86,770,154</td>
</tr>
<tr>
<td>12월</td>
<td>13,800,000</td>
<td>31</td>
<td>100%</td>
<td>427,800,000</td>
<td>8,450</td>
<td>50,627</td>
<td>1,593.93</td>
<td>90%</td>
<td>89,662,492</td>
</tr>
<tr>
<td>계</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>789,608,400</td>
</tr>
</tbody>
</table>
8. 가스보일러 운전비

<table>
<thead>
<tr>
<th>구분</th>
<th>일일부하량 (kcal/day)</th>
<th>사용일수</th>
<th>월별부하지수</th>
<th>월간부하량 (kcal/month)</th>
<th>LNG저위발열량 (Kcal/Nm3)</th>
<th>LNG소비량 (Kcal/Nm3)</th>
<th>단가 (원/Nm3)</th>
<th>효율</th>
<th>운전비 (원)</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>1월</td>
<td>13,800,000</td>
<td>31</td>
<td>100%</td>
<td>427,800,000</td>
<td>9,550</td>
<td>44,796</td>
<td>659.59</td>
<td>95%</td>
<td>31,101,968</td>
<td></td>
</tr>
<tr>
<td>2월</td>
<td>13,800,000</td>
<td>28</td>
<td>100%</td>
<td>386,400,000</td>
<td>9,550</td>
<td>40,461</td>
<td>659.59</td>
<td>95%</td>
<td>28,092,100</td>
<td>난방</td>
</tr>
<tr>
<td>3월</td>
<td>13,800,000</td>
<td>31</td>
<td>100%</td>
<td>427,800,000</td>
<td>9,550</td>
<td>44,796</td>
<td>659.59</td>
<td>95%</td>
<td>31,101,968</td>
<td></td>
</tr>
<tr>
<td>4월</td>
<td>13,800,000</td>
<td>30</td>
<td>100%</td>
<td>414,000,000</td>
<td>9,550</td>
<td>43,351</td>
<td>659.59</td>
<td>95%</td>
<td>30,098,678</td>
<td></td>
</tr>
<tr>
<td>5월</td>
<td>13,800,000</td>
<td>31</td>
<td>100%</td>
<td>427,800,000</td>
<td>9,550</td>
<td>44,796</td>
<td>659.59</td>
<td>95%</td>
<td>31,101,968</td>
<td></td>
</tr>
<tr>
<td>6월</td>
<td>13,800,000</td>
<td>30</td>
<td>0%</td>
<td>-</td>
<td>9,550</td>
<td>-</td>
<td>659.59</td>
<td>95%</td>
<td>-</td>
<td>난방</td>
</tr>
<tr>
<td>7월</td>
<td>13,800,000</td>
<td>31</td>
<td>0%</td>
<td>-</td>
<td>9,550</td>
<td>-</td>
<td>659.59</td>
<td>95%</td>
<td>-</td>
<td>난방</td>
</tr>
<tr>
<td>8월</td>
<td>13,800,000</td>
<td>31</td>
<td>0%</td>
<td>-</td>
<td>9,550</td>
<td>-</td>
<td>659.59</td>
<td>95%</td>
<td>-</td>
<td>난방</td>
</tr>
<tr>
<td>9월</td>
<td>13,800,000</td>
<td>30</td>
<td>100%</td>
<td>414,000,000</td>
<td>9,550</td>
<td>43,351</td>
<td>659.59</td>
<td>95%</td>
<td>30,098,678</td>
<td></td>
</tr>
<tr>
<td>10월</td>
<td>13,800,000</td>
<td>31</td>
<td>100%</td>
<td>427,800,000</td>
<td>9,550</td>
<td>44,796</td>
<td>659.59</td>
<td>95%</td>
<td>31,101,968</td>
<td></td>
</tr>
<tr>
<td>11월</td>
<td>13,800,000</td>
<td>30</td>
<td>100%</td>
<td>414,000,000</td>
<td>9,550</td>
<td>43,351</td>
<td>659.59</td>
<td>95%</td>
<td>30,098,678</td>
<td></td>
</tr>
<tr>
<td>12월</td>
<td>13,800,000</td>
<td>31</td>
<td>100%</td>
<td>427,800,000</td>
<td>9,550</td>
<td>44,796</td>
<td>659.59</td>
<td>95%</td>
<td>31,101,968</td>
<td></td>
</tr>
<tr>
<td>계</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>273,897,974</td>
<td></td>
</tr>
</tbody>
</table>
9. 부록 E. (주)레이크힐스 골프텔 온천수 이용 열교환 난방시스템 투자비 산정

(단위: 천원)

<table>
<thead>
<tr>
<th>Item</th>
<th>열량</th>
<th>열교환기</th>
<th>기계설비관공사</th>
<th>자동제어</th>
<th>순환펌프</th>
<th>합계</th>
</tr>
</thead>
<tbody>
<tr>
<td>숙박시설 기준</td>
<td>669 KW</td>
<td>4,000</td>
<td>10,000</td>
<td>7,000</td>
<td>10,000</td>
<td>31,000</td>
</tr>
<tr>
<td>Remark</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

※열교환기 재질은 SUS316L이며, 염분이 함유되었을 경우 부식의 우려가 있음.
※ 위 금액은 대략치이며, 설계시 정확한 사양으로 인한 금액변동이 발생함.

10. 경제성 검토

(단위: 천원 (부가가치세별도))

<table>
<thead>
<tr>
<th>구분</th>
<th>온천수 열교환 난방시스템</th>
<th>경유보일러</th>
<th>가스 보일러</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>예상 설비비</td>
<td>31,000</td>
<td>9,768</td>
<td>12,414</td>
<td></td>
</tr>
<tr>
<td>정부보조지원금</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>한전무상지원금</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>설투자비</td>
<td>31,000</td>
<td>9,768</td>
<td>12,414</td>
<td></td>
</tr>
<tr>
<td>년간 운전비</td>
<td>3,086</td>
<td>789,608</td>
<td>273,898</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>경유보일러</th>
<th>가스보일러</th>
</tr>
</thead>
<tbody>
<tr>
<td>년간 운전비차액</td>
<td>270,812</td>
</tr>
<tr>
<td>년간 운전비차액</td>
<td>786,523</td>
</tr>
<tr>
<td>투자 회수기간</td>
<td>0.027</td>
</tr>
</tbody>
</table>

※ 경유 및 가스보일러 단가는 사단법인 한국물가정보 제공 자료를 기준으로 하였음.